一种基于补偿模糊神经网络的水质预测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP183 X830.3

基金项目:


Water Quality Forecasting Method Based on Compensative Fuzzy Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在污水处理系统过程控制中,对水质变化规律进行预测是控制系统可靠、稳定运行的重要环节。介绍了基于模糊逻揖和神经网络的补偿神经网络(CFNN)及其学习算法,利用CFNN学习速度快、学习过程稳定、全局动态优化运算等特点,建立污水处理厂CFNN的水质预测模型。实例预测结果表明该模型对初始值的选择不敏感,具有很好的收敛性和预测精度,适合实际工程应用。

    Abstract:

    The forecasting of water quality variation is very important in the process of sewage treatment, which helps the control system work reliably and steadily. In this paper, the compensative fuzzy neural network (CFNN) based on compensative fuzzy logic and neural network and its study arithmetic are introduced. Considering its features as fast speed, steady studying course, global dynamic optimization, CFNN is applied to establish water quality forecasting model. The practical example indicates that the model is not sensitive to initial parameters and has better forecasting precision and faster convergence.

    参考文献
    相似文献
    引证文献
引用本文

王海云,冯裕钊,张晓清,赵宏伟.一种基于补偿模糊神经网络的水质预测方法[J].土木与环境工程学报(中英文),2004,26(5):77-81. WANG Hai-yun, FENG Yu-zhao, ZHANG Xiao-qing, ZHAO Hong-wei. Water Quality Forecasting Method Based on Compensative Fuzzy Neural Network[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2004,26(5):77-81.10.11835/j. issn.1674-4764.2004.05.017

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2004-02-18
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码