基于SVR的城市供水管网余氯预测分析
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TU991.3

基金项目:

国家“十五”科技攻关项目(2002AA601120),天津市科委社发项目(033113111)


Prediction and Analyses of Residual Chlorine Based on Support Vector Regression in Urban Water Distribution System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    支持向量机回归(SupportVector Regression SVR)算法是结构风险最小化原理在函数回归方面的应用。根据北方某城市供水管网余氯的人工采样数据,建立了基于SVR的余氯预测模型,并与人工神经网络、多元线性回归方法进行比较分析,结果表明:在有限样本情况下,SVR模型具有良好的泛化推广能力,各监测点模型预测平均相对误差为1.80%~8.73%,并可获得全局最优解,达到了实用要求,较好地解决了以往管网余氯小样本预测时,常常出现拟合精度高、预测效果较差的问题。

    Abstract:

    Support vector regression(SVR) algorithm is an application of structural risk minimization principle in function regression.In this paper,a residual chlorine prediction model based on SVR is established by using the data of manual sampling residual chlorine of water distribution system in a certain city in the north of China.SVR model is compared with the artificial neural network and multivariate linear regression.The result shows that SVR model has better generalization ability for small samples,the predicted average relative error of all monitoring points is 1.80%~8.73%,and can achieve unique and globally optimal solutions.It is practical and can solve the problem for small samples of residual chlorine when the fit precision of model is good but the predicted effect is worse.

    参考文献
    相似文献
    引证文献
引用本文

田一梅 吴迷芳 王阳.基于SVR的城市供水管网余氯预测分析[J].土木与环境工程学报(中英文),2006,28(2):74-78. TIAN Yi - mei, WU Mi - fang, Wang Yang. Prediction and Analyses of Residual Chlorine Based on Support Vector Regression in Urban Water Distribution System[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2006,28(2):74-78.10.11835/j. issn.1674-4764.2006.02.021

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-12-30
  • 最后修改日期:2005-12-30
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码