[关键词]
[摘要]
需水量预测是一个大量数据指标和影响因素共同作用的复杂系统。目前以单一的模型预测为主,而这种预测方法仅能体现该系统的局部。针对这一情况,利用灰色模型和改进BP神经网络,建立最优权组合模型预测城市需水量,使用Matlab进行实例计算,并与其他预测方法比较。结果表明,该模型有较高的预测精度,优于单个模型,预测效果更优于其他方法。
[Key word]
[Abstract]
Prediction of water demand is a complex system affected by a mass of data and influencing factors together. Nowadays, most of the forecasting methods are single model ones. They reflect only part of the system. In view of this situation, a combined model
[中图分类号]
[基金项目]