平面应力状态下混凝土的热弹塑性积分方案
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TU528

基金项目:

国家重点基础研究发展计划(973计划),国家自然科学基金,国家自然科学基金


Integration Strategy for Thermal-Elastic-Plastic Models of Concrete under Plane Stress
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在高温状态下的屈服函数是温度和塑性应变的函数,塑性应变不仅与应力状态有关,还取决于温度。如果采用常规的计算方法,如径向返回法,需要更多的迭代运算,造成计算效率不高。另外,对于单轴受力情况,每个时间步内的温度路径也是很难确定。采用平面应力状态下混凝土常用的屈服函数Drucker-Prager准则,给出了相应的高温热弹塑性积分方案的初值问题表达式,可采用Runge-Kutta法对其积分,较好地解决了前面两个问题。采用基于S-R分解原理的更新拖带坐标有限元法,通过实际编程计算得出,该积分方案可靠、精度高。

    Abstract:

    Plastic strain was determined at multiple time increments.The strain was caused by stress and temperature.The yield function in high-temperature states is the function of temperature and plastic strain.The calculation efficiency would be decreased and much more calculation would be needed if a conventional method,such as the radial return method,was used.In the case of axial stress states,the temperature path was difficult to determine at various time intervals.Initial value equations were obtained with the Drucker-Prager function of plane stress concrete.This method can solve the previously mentioned problems efficiently when used with the Runge-Kutta integration strategy.A program was developed with an updated co-varying coordinate finite element method based on the S-R decomposition theorem.Computational results show that the integration strategy is highly accurate and efficient.

    参考文献
    相似文献
    引证文献
引用本文

高立堂,李晓东,陈礼刚,董毓利.平面应力状态下混凝土的热弹塑性积分方案[J].土木与环境工程学报(中英文),2008,30(3). GAO Li-tang, LI Xiao-dong, CHEN Li-gang, DONG Yu-li. Integration Strategy for Thermal-Elastic-Plastic Models of Concrete under Plane Stress[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2008,30(3).10.11835/j. issn.1674-4764.2008.03.009

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码