GIS的嘉陵江流域吸附态氮磷污染负荷研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

X522

基金项目:

中国科学院"西部之光"人才培养计划,重庆市科委资助项目


A GIS-Based Study of the Pollution Load of Adsorbed Nitrogen and Phosphorus in Jialing River Basin, P. R. China
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以美国通用土壤流失方程为基础,根据研究流域的特征和已有的研究成果确定方程中的因子算式,在地理信息系统GIS支持下,估算了各单元的土壤流失量,应用吸附态非点源污染负荷模型,对嘉陵江流域吸附态氮磷污染负荷进行了数值模拟与定量分析。结果表明:嘉陵江流域近年平均输沙模数为161.94 t/(km2.a),北碚出口吸附态氮磷污染负荷分别为29620.8 t/a和1391.96 t/a,吸附态氮磷流失较严重的地区主要分布在白龙江和西汉水流域,各土地利用类型吸附态氮磷流失模数大小顺序依次为:荒地>灌木>草地>农田>城镇>林地。

    Abstract:

    Some reasonable and suitable methods for factor calculation of the equation were chosen based on the American Universal Soil Loss equation,the characteristics of the Jialing River basin in P.R.China,and related research results.The soil erosion and loss in each hydrological unit of the basin were estimated using GIS.Employing the non-point source adsorbed nutrition load model,the loads of adsorbed nitrogen and phosphorus pollution were calculated and analyzed.The results show that the average sediment transportation module in the Jialing River Basin in recent years is 161.94 t/(km2a),and the loads of adsorbed nitrogen and phosphorus pollution are 29 620.8 t/a and 1 391.96 t/a,respectively,at the watershed outlet(Beibei hydrologic station).Adsorbed nitrogen and phosphorus pollution are serious in the Bailong River and Xihanshui basins.The descending order of land type with adsorbed nitrogen and phosphorus loss modulus is as follows: wild land,bush,turf,field,city and forest.

    参考文献
    相似文献
    引证文献
引用本文

龙天渝,刘腊美,李崇明,李继承. GIS的嘉陵江流域吸附态氮磷污染负荷研究[J].土木与环境工程学报(中英文),2008,30(3). LONG Tian-yu, LIU La-mei, LI Chong-ming, LI Ji-cheng. A GIS-Based Study of the Pollution Load of Adsorbed Nitrogen and Phosphorus in Jialing River Basin, P. R. China[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2008,30(3).10.11835/j. issn.1674-4764.2008.03.026

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码