非线性微分动力学模型的沥青老化行为
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(50478095)西部交通建设科技项目(200631881221)


Aging Behavior Analysis of Asphalt based on Nonlinear Differential Dynamic Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了研究沥青的老化行为及抗老化性能,将沥青进行旋转薄膜烘箱老化(RTFOT)和60 ℃烘箱老化试验,并从不同使用年限的路面回收老化的沥青,采用非线性微分动力学模型对不同老化方式的沥青粘度进行拟合,根据模型参数讨论了沥青在不同老化条件下的性质变化和老化速率,并分析了老化机理的差异。结果表明,非线性微分模型可以有效地模拟沥青室内和野外老化进程,模型参数L和r可以实现对老化状态和老化速率的量化。不同老化温度下,沥青都有其对应的极限老化状态,RTFOT老化与野外老化的极限老化程度约为60 ℃烘箱老化的4~5倍

    Abstract:

    In order to study aging behavior and antiaging performance of asphalt, aging tests were carried out with rolling thin film oven test(RTFOT) and oven aging test at 60℃, and aged asphalt was extracted from pavements of different service life. Viscosity of asphalt samples was fitted with nonlinear differential dynamic model. With parameter study, property changes, aging rate of asphalt and the difference of aging mechanism were analysed under different aging conditions. It was shown that the nonlinear differential dynamic model can simulate asphalt aging process in the laboratory or onsite effectively. At the same time, model parameters(L and r) can quantify aging state and aging rate. Asphalt had its limited aging state corresponding with different aging temperature. Ultimate aging degree of RTFOT and field aging were about 4~5 times of that of oven aging test at 60 ℃. And aging effect of RTFOT for 6h was about equivalent with that of field aging for 6 years. Thus timedelay RTFOT can simulate longterm aging of pavement asphalt.

    参考文献
    相似文献
    引证文献
引用本文

栗培龙,张争奇,王秉纲.非线性微分动力学模型的沥青老化行为[J].土木与环境工程学报(中英文),2009,31(4):55-59. LI Peilong, ZHANG Zhengqi, WANG Binggang. Aging Behavior Analysis of Asphalt based on Nonlinear Differential Dynamic Model[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2009,31(4):55-59.10.11835/j. issn.1674-4764.2009.04.011

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码