Abstract:A nonlinear constraint-surface impact element (CIE) was developed for simulating the pounding in axial direction between 3D shell-element-mesh bridge girders based on the engineering background of ChaoShan airport. Then, a method, different from the previous literatures, for calculating the stiffness of impact element was proposed based on the flexibility method. The methods proposed were adopted and used to analyze the elevated bridge of ChaoShan airport in GuangZhou for the purpose of investigating comprehensively the earthquake-resistance capability. The bridge girders were modeled by shell elements and CIEs were assigned to the positions of the corresponding expansion joints. Isolating elements were used to simulate LRBs, and typical bilinear LRB hysteresis stiffness model obtained from experiment were adopted to describe the dynamic hysteresis behavior. Pounding forces, dissipation capability of LRBs, lateral displacements of LRBs, pier base shear forces and moments as well as the pounding effect on these cases were investigated, respectively. The proposed methods and analysis results aim at improving the earthquake resistance of the elevated bridge, which provides reference for the similar project.