二维非负稀疏偏最小二乘在人脸识别中的应用
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Two Dimensional Nonnegative Sparse Partial Least Squares for Face Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近几年偏最小二乘算法在人脸识别中得到了广泛的应用,但是其各种改进算法都没有同时利用非负性算法和稀疏性来提高识别率和鲁棒性。为了解决这些问题,结合二维偏最小二乘与非负性思想和稀疏性约束提出二维非负稀疏偏最小二乘(Two-dimensional nonnegative sparse partial least squares,2DNSPLS) 算法。其核心思想是在提取人脸特征时加入了非负性约束和稀疏性约束,使得2DNSPLS不仅拥有偏最小二乘算法加入类别信息带来的分类效果,还保留了图像矩阵的内部结构信息,而且还使得到的基矩阵具有非负的局部的可解释性并且具有一定的稀疏性。在Yale和PIE人脸库中的实验表明,该算法从时间上和识别率上均优于人脸识别的主流算法,并且对于遮挡有较好的鲁棒性。

    Abstract:

    Partial least squares (PLS) algorithm has been widely used in face recognition recent years, but the improved algorithm of PLS did not consider both the constraint of nonnegative and sparsity to improve the recognition accuracy and robustness. To take over these disadvantages, the paper proposes a novel approach to extract the facial features called Two-dimension Nonnegative Sparse Partial Least Squares (2DNSPLS). The main idea of the approach is grabbing the local features via adding the constraint of nonnegative and sparse to 2DPLS, which make the approach gain not only the advantages of 2DPLS, incorporating both inherent structure and category information of images, but also the local features, having nonnegative interpretability and sparsity. For evaluating the approach’s performance, a series of experiments are conducted on two famous face image databases Yale and PIE face databases, which demonstrate that the proposed approach outperforms the state-of-art algorithms and has good robustness to occlusion.

    参考文献
    相似文献
    引证文献
引用本文

步文斌,杨丹,黄晟,葛永新,张小洪.二维非负稀疏偏最小二乘在人脸识别中的应用[J].土木与环境工程学报(中英文),2013,35(Z2):73-77. Bu Wenbin, Yang Dan, Huang Sheng, Ge Yongxin, Zhang Xiaohong. Two Dimensional Nonnegative Sparse Partial Least Squares for Face Recognition[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2013,35(Z2):73-77.[doi]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2014-02-25
  • 出版日期:
文章二维码