Abstract:The static tests on hybrid fiber (steel fiber and polypropylene fiber) reinforced high performance concrete deep beams according to the orthogonal experimental design were conducted. The shear capacity and calculation method of deep beams were discussed as well. The contributory factors such as the characteristic parameters of steel fiber (types, volume fraction, aspect ratio), the volume fraction of polypropylene fiber, the ratio of web horizontal reinforcement and the ratio of web vertical reinforcement were analyzed. Results show that the shear failure mode of deep beams is changed with adding a reasonable volume of hybrid fibers, and hybrid fiber can greatly increase the diagonal cracking strength and shear strength of HPC deep beams. The diagonal cracking strength is increased by 45.2% averagely while the shear strength is increased by 25.6% averagely. A satisfied result is obtained when the plasticity theory is used to analyze shear behavior of hybrid fiber reinforced HPC deep beams. The contribution of web horizontal reinforcement and web vertical reinforcement to shear strength of deep beams is not obvious but the former plays a major role. After analyzing the strengthening mechanism of hybrid fiber, a formula to calculate the shear capacity of hybrid fiber reinforced HPC deep beams is presented based on spatial strut-and-tie mode and splitting failure.