基于KPCA-WLSSVM的建筑能耗预测模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(6080402、61374133);高校博士点专项科研基金(20133314120004)


A prediction model for energy consumption of building based on KPCA-WLSSVM
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (No. 6080402, 61374133); Research Fund for the Doctoral Program of Higher Education of China (No. 20133314120004)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为降低建筑能耗影响因素间复杂相关性对模型性能的影响,建立了一种基于KPCA-WLSSVM的建筑能耗预测模型。利用核主元分析(KPCA)对输入变量进行数据压缩,消除变量之间的相关性,简化模型结构;进一步采用加权最小二乘支持向量机(WLSSVM)方法建立建筑能耗预测模型,同时结合一种新型混沌粒子群-模拟退火混合优化(CPSO-SA)算法对模型参数进行优化,以提高模型的预测性能及泛化能力。通过将KPCA-WLSSVM模型方法应用于某办公建筑能耗的预测中,并与WLSSVM、LSSVM及RBFNN模型相比,实验结果表明,KPCA-WLSSVM模型方法能有效提高建筑能耗预测精度。

    Abstract:

    The correlations among the building energy consumption factors can corrupt the prediction model’s performance, and get undesirable results. A prediction model based on KPCA-WLSSVM is proposed to forecast building energy consumption. The kernel principal component analysis (KPCA) method could not only solve the linear correlation of the input and compress data but also simplify the model structure. A novel hybrid chaos particle swarm optimization simulated annealing (CPSO-SA) algorithm is applied to optimize WLSSVM parameters to improve learning performance and generalization ability of the model. Furthermore, the KPCA-WLSSVM model is applied to the energy consumption prediction for an office building, and the results show that the KPCA-WLSSVM has better accuracy compared with WLSSVM model, LSSVM model and RBF neural network model. and the KPCA-WLSSVM is effective for building energy consumption prediction.

    参考文献
    相似文献
    引证文献
引用本文

赵超,戴坤成,王贵评.基于KPCA-WLSSVM的建筑能耗预测模型[J].土木与环境工程学报(中英文),2015,37(5):109-115. Zhao Chao, Dai Kuncheng, Wang Guiping. A prediction model for energy consumption of building based on KPCA-WLSSVM[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2015,37(5):109-115.10.11835/j. issn.1674-4764.2015.05.016

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-06-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-11-18
  • 出版日期:
文章二维码