加速腐蚀环境下钢板表面坑蚀形貌统计规律
CSTR:
作者:
基金项目:

国家自然科学基金(51378417)


Statistical regularity of surface pitting morphology of steel in accelerated corrosion environment
Author:
Fund Project:

National Natural Science Foundation of China (No. 51378417)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用光学表面测量技术对实验室加速腐蚀钢板试件进行坑蚀表面数据采集,通过建立不同龄期的锈蚀钢板表面形貌图讨论了锈蚀钢板表面点蚀特征随腐蚀时间的变化趋势。对于以局部腐蚀为主的锈蚀钢板,通过计算证明坑蚀平均深度近似等于腐蚀平均深度,且其随时间的变化趋势可以采用新型weibull函数加以描述。经过对垂直于钢板受力方向的坑蚀截面损失率进行探究,指出可以利用正态分布模型表征其随机分布规律,并建立了模型参数与坑蚀平均深度之间关系式。最后讨论了与腐蚀时间相关的钢板屈服强度退化概率模型。

    Abstract:

    We used the optical surface measurement technology to collect the pitting surface data of steel plate specimens subjected to laboratory accelerated corrosion, and discussed on trends of pitting characteristics with the increase of corrosion time by establishing 3D contour pictures of surface data of corroded steel with different corrosion time. For the corroded steel plate mainly with local corrosion, calculations showed that the average depth of pitting corrosion was approximately equal to the average depth of corrosion, and the tendency of the average depth of pitting corrosion with time could be described by a new Weibull function. The pitting section loss ratio, which was perpendicular to the force direction of steel plate, showed a normal distribution, and the relationship between the model parameters and the average depth of pitting corrosion was established. The probabilistic yield strength deterioration model relating to the corrosion ratio was discussed.

    参考文献
    [1] Almusallam A A. Effect of degree of corrosion on the properties of reinforcing steel bars[J]. Construction and Building Material, 2001, 15(8): 361-368.
    [2] Du Y G, Clark L A, Chan A H C. Residual capacity of corroded reinforcing bars[J]. Magazine of Concrete Research, 2005, 57(3): 135-147.
    [3] 张伟平, 商登峰, 顾祥林. 锈蚀钢筋应力一应变关系研究[J]. 同济大学学报:自然科学版, 2006, 34(5):586-592. Zhang W P, Shang D F, Gu X L. Stress-strain relationship of corroded steel bars[J]. Journal of Tongji University:Natural Science, 2006, 34(5): 586-592.(in Chinese)
    [4] 范颖芳, 张英姿, 胡志强, 等. 基于概率分析的锈蚀钢筋力学性能研究[J]. 建筑材料学报, 2006, 9(1):99-104. Fan Y F, Zhang Y Z, Hu Z Q,et al. Study on mechanical property of rusty rebar based on probability analysis[J]. Journal of Building Materials, 2006, 9(1): 99-104.(in Chinese)
    [5] 王波, 袁迎曙, 李富民, 等. 氯盐锈蚀钢筋的屈服强度退化分析及其概率模型[J]. 建筑材料学报, 2011, 14(5):597-603. Wang B, Yuan Y S, Li F M,et al. Deterioration analysis of yield strength and its probabilistic model of steel bar corroded by chloride[J]. Journal of Building Materials, 2011, 14(5): 597-603.(in Chinese)
    [6] 徐亦冬, 钱春香, 边力, 等. 非均匀锈蚀钢筋表面轮廓的分形表征[J]. 应用基础与工程科学学报, 2012, 20(2):296-303. Xu Y D, Qian C X, Bian L,et al. Fractai based characterization of nonuniform corroded surface profile in steel bars[J]. Journal of Basic Science and Engineering, 2012, 20(2): 296-303.(in Chinese)
    [7] Melchers R E. Pitting corrosion of mild steel in marine immersion environment-Part 1: Maximum pit depth[J]. Corrosion, 2004, 60(9):824-836.
    [8] Melchers R E. Pitting corrosion of mild steel in marine immersion environment-Part 2:Variability of maxmum pit depth[J]. Corrision, 2004, 60(10):937-944.
    [9] Paik J K. Ultimate strength of ships-time-variant risk assessment of aging ship staking account of general/pit corrosion, fatigue cracking and local dent damage.[R]. Technical Report RD 2002-11,American Bureau of Shipping, 2002.
    [10] Paik J K, Wang G, Thayamballi A K, Lee J M. Time-dependent risk assessment of aging ships accounting for general/pit corrosion, fatigue cracking and local denting[J]. SNAME Trans, 2003(2)111-115.
    [11] 王燕舞, 黄小平, 崔维成. 船舶结构钢海洋环境点蚀模型研究之一:最大点蚀深度时变模型[J]. 船舶力学, 2007, 11(4):577-586. Wang Y W, Huang X P, Cui W C. Pitting corrosion model of mild and low-alloy steel in Marine environment-Part 1: Maximum pit depth[J]. Journal Of Ship Mechanics, 2007, 11(1): 65-79.(in Chinese)
    [12] Appuhamy J M R S, Kaita T, Ohga M,et al. Prediction of residual strength of corroded tensile steel plates[J]. International Journal of Steel Structures, 2011, 11(1):65-79.
    [13] 曹楚南. 中国材料的自然环境腐蚀[M]. 北京:化学工业出版社, 2006 :34-35. Cao C N. Natural environmental corrosion of China materials[M]. Beijing:Chemical Industry Press, 2006. 34-35.
    [14] Paik J K, Kim S K, Lee S K. Probabilistic corrosion rate estimation model for longitudinal strength members of bulk carriers[J]. Ocean Engineering, 1998, 25(10):837-860.
    [15] 安琳, 欧阳平, 郑亚明. 锈坑应力集中对钢筋力学性能的影响[J]. 东南大学学报:自然科学版, 2005, 35(6):940-944. An L, Ouyang P, Zheng Y M. Effect of stress concentration on mechanical properties of corroded reinforcing steel bars[J]. Journal of Southeast University:Natural Science, 2005, 35(6): 940-944.
    [16] Mohammad M. Kashani, Adam J. Use of a 3D optical measurement technique for stochastic corrosion pattern analysis of reinforcing bars subjected to accelerated corrosion[J]. Corrosion Science, 2013(73):208-221.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王皓,徐善华,苏磊.加速腐蚀环境下钢板表面坑蚀形貌统计规律[J].土木与环境工程学报(中英文),2016,38(1):23-29. Wang Hao, Xu Shanhua, Su Lei. Statistical regularity of surface pitting morphology of steel in accelerated corrosion environment[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2016,38(1):23-29.10.11835/j. issn.1674-4764.2016.01.004

复制
分享
文章指标
  • 点击次数:1671
  • 下载次数: 2320
  • HTML阅读次数: 558
  • 引用次数: 0
历史
  • 收稿日期:2015-08-25
  • 在线发布日期: 2016-03-01
文章二维码