罕遇地震下石化钢结构减震的关键影响因素
CSTR:
作者:
基金项目:

四川省科技支撑计划(2014SZ0110)


Influence factors of vibration reduction in petrochemical steel structure under rare earthquake
Author:
Fund Project:

Science and Technology Support Program of Sichuan Province (No. 2014SZ0110)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在强烈地震作用下,炼油厂的石化钢结构可能发生破坏,导致较大的经济损失,并易引发严重的次生灾害。为降低石化钢结构的地震风险,结合石化钢结构的特点,以某大型炼油厂重整装置反应器为例,建立有限元分析模型,设置黏滞阻尼器进行罕遇地震下的减震设计,并分析了阻尼器的设置位置、数量和阻尼参数等影响因素。研究结果表明,黏滞阻尼器所在楼层的层间剪力和层间位移角显著减小,布置在结构底部的减震效果优于布置在中、上部;随着阻尼器数量的增加,层间剪力和层间位移角都会随之减小,但减少幅度逐渐降低;阻尼系数对石化钢结构减震效果的影响大于阻尼指数,减震设计中宜优先调整阻尼系数以获得较好的抗震性能。

    Abstract:

    Strong earthquake has adverse impact on the petrochemical steel structures of refinery and lead to large economic losses and serious secondary disasters. We studied a reformer reactor of a large refinery, built the finite element model and set viscous dampers to reduce the seismic risk of petrochemical structures based on their characteristics. Then we analyzed the influence factors, including location, quantity and the damping parameters of the viscous dampers. The results show that the inter-story force and inter-story displacement angle of the floor where the viscous damper was setted decrease significantly, and the damping effect with setting viscous damper in the bottom is greater than that in the middle and upper part. Besides, the inter-story force and inter-story displacement angle decrease when the number of viscous damper increases, but the decrease amplitude reduces gradually. In addition, the influence of damping coefficient on the damping effect of the petrochemical steel structure is greater than that of the damping index. So the damping coefficient should be given priority to consider in the structure design for better seismic performance.

    参考文献
    [1] 周云.粘滞阻尼减震结构设计[M].武汉:武汉理工大学出版社,2006. Zhou Y. Nianzhi zuni jianzhen jiegou sheji [M]. Wuhan: Wuhan University of Technology Press, 2006. (in Chinese)
    [2] 汪大洋, 周云, 王烨华, 等.粘滞阻尼减震结构的研究与应用进展[J].工程震动与加固改造, 2006,28(4):22-31. Wang D Y, Zhou Y, Wang Y H,et al. State-of-the-art of research and application on structures with viscous damper [J]. Earthquake Resistant Engineering and Retrofitting, 2006, 28(4): 22-31. (in Chinese)
    [3] 周云, 林绍明, 邓雪松, 等. 设置悬臂肘节型黏滞阻尼器高层结构的减震效果分析[J].工程震动与加固改造, 2014,36(2):8-14. Zhou Y, Lin S M, Deng X S, et al. Analysis of seismic mitigation effect on high-rise building with cantilever-toggle-brace viscous dampers [J]. Earthquake Resistant Engineering and Retrofitting, 2014, 36(2): 8-14. (in Chinese)
    [4] 翁大根, 张超, 吕西林, 等. 附加黏滞阻尼器减震结构实用设计方法研究[J]. 振动与冲击,2012,31(21):80-88. Weng D G, Zhang C, Lyu X L, et al. Practical design procedure for a energy-dissipated structure with viscous dampers [J]. Journal of Vibration and Shock, 2012, 31(21): 80-88. (in Chinese)
    [5] 孙传智, 李爱群, 缪长青, 等. 减震结构粘滞阻尼器参数优化分析[J]. 土木建筑与环境工程, 2013,35(1):80-85. Sun C Z, Li A Q, Miao C Q, et al. Parameter optimization analysis of viscous dampers for dissipation structure [J]. Journal of Civil, Architectural & Environmental Engineering, 2013,35(1):80-85.(in Chinese)
    [6] 胡岚. 装粘滞流体阻尼器的高层钢结构煤气化工业厂房减震研究[D].武汉:武汉工业大学,2008. Hu L. Seismic behavior of steel coal gasification highsise building with fluid viscous dampers [D]. Wuhan: Wuhan University, 2008. ( in Chinese)
    [7] 高云鹏, 赵鸣. 带减震构造的立式LNG球罐减震性能分析[J].特种结构,2013,30(5),57-64. Gao Y P, Zhao M. Damping performance analysis about vertical LNG spherical tank with damping structure [J]. Special Structures, 2013,30(5),57-64.(in Chinese)
    [8] Tubaldi E, Barbato M, Dall'Asta A. Performance-based seismic risk assessment for buildings equipped with linear and nonlinear viscous dampers [J]. Engineering Structures, 2014, 78: 90-99.
    [9] Hejazi F, Zabihi A, Jaafar M S. Development of elasto-plastic viscous damper finite element model for reinforced concrete frames [J]. Soil Dynamics and Earthquake Engineering, 2014, 65: 284-293.
    [10] Kang J D, Tagawa H. Seismic performance of steel structures with seesaw energy dissipation system using fluid viscous dampers [J]. Engineering Structures, 2013, 56: 431-442.
    [11] 张志强,李爱群.建筑结构黏滞阻尼器减震设计[M].北京:中国建筑工业出版社,2012:67-68.
    [12] Hart G C, Wong K. Structural dynamics for structural engineers [M]. Wiley, 1999: 483-530.
    [13] 汤昱川, 张玉良, 张铜生. 粘滞阻尼器减震结构的非线性动力分析[J]. 工程力学, 2004, 21(1): 67-71. Tang Y C, Zhang Y L, Zhang T S. Nonlinear dynamic analysis of structures with viscous dampers [J]. Engineering Mechanics, 2004, 21(1): 67-71. (in Chinese)
    [14] Hatzigeorgiou G D, Pnevmatikos N G. Maximum damping forces for structures with viscous dampers under near-source earthquakes[J]. Engineering Structures,2014,68,1-13.
    [15] GB 50011-2010 建筑抗震设计规范[S].北京:中国建筑工业出版社,2010. GB 50011-2010 Code for seismic design of buildings [S]. Beijing: China Building Industry Press, 2010. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高剑,王忠凯,潘毅,葛庆子.罕遇地震下石化钢结构减震的关键影响因素[J].土木与环境工程学报(中英文),2016,38(1):92-99. Gao Jian, Wang Zhongkai, Pan Yi, Ge Qingzi. Influence factors of vibration reduction in petrochemical steel structure under rare earthquake[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2016,38(1):92-99.10.11835/j. issn.1674-4764.2016.01.013

复制
分享
文章指标
  • 点击次数:1490
  • 下载次数: 1531
  • HTML阅读次数: 453
  • 引用次数: 0
历史
  • 收稿日期:2015-09-25
  • 在线发布日期: 2016-03-01
文章二维码