三维轴对称功能梯度材料瞬态热传导问题的自然单元法
CSTR:
作者:
基金项目:

国家自然科学基金(21466012);江西省教育厅项目(KJLD14041)


Natural element method for transient heat conduction analyse of 3D axisymmetric functionally graded solids
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了更有效地求解三维轴对称功能梯度材料瞬态热传导问题,对无网格自然单元法应用于此类问题进行了研究,并发展了相应的计算方法。基于几何形状和边界条件的轴对称性,三维的轴对称问题可降为二维平面问题。为了简化本质边界条件的施加,轴对称面上的温度场采用自然邻近插值进行离散。功能梯度材料特性的变化由高斯点的材料参数进行模拟。时间域上,采用传统的两点差分法进行离散求解,进而得到瞬态温度场的响应。数值算例结果表明,提出的方法是行之有效的,理论及方法不仅拓展了自然单元法的应用范围,而且对三维轴对称瞬态热传导分析具有普遍意义。

    Abstract:

    In order to solve the transient heat conduction problems in three-dimensional(3D) axisymmetric continuously nonhomogeneous functionally graded materials(FGMs) more effectively, a novel numerical method based on the meshless natural element method is proposed. Axial symmetry of geometry and boundary conditions helps to transform the 3D axisymmetric problem into a two-dimensional(2D) prolem. In order to simplify the imposition of the essential boundary conditions, the natural neighbour interpolation is adopted to discretize the temperature field within the cross section. The variations of functionally graded material properties are simulated by employing proper material parameters at Gauss points. The spatially discretized heat conduction equation is solved numerically with the traditional two-point difference technique in the time domain. The present method not only broadens the application scope of the natural element method, but also will be generally available to transient heat conduction analyses of 3D axisymmetric solids.

    参考文献
    [1] 张静华,魏军杨. DQ法求解FGM Levinson梁的静态弯曲问题[J]. 华东交通大学学报, 2014, 31(3):80-87. ZHANG J H, WEI J Y. Static bending solution of functionally graded material Levinson beams based on differential quadrature method[J]. Journal of East China Jiaotong University, 2014, 31(3):80-87.(in Chinese)
    [2] WANG H, QIN Q H, KANG Y L. A meshless model for transient heat conduction in functionally graded materials[J]. Computational Mechanics, 2006, 38:51-60.
    [3] 蓝林华,富明慧,程正阳. 功能梯度材料瞬态热传导问题的降维精细积分法[J]. 固体力学学报, 2010, 31(4):406-410. LAN L H, FU M H, CHENG Z Y. Decrement-dimensional precise time integration of 2D transient heat conduction equation for functionally graded materials[J]. Chinese Journal of Solid Mechanics, 2010, 31(4):406-410.(in Chinese)
    [4] 陈建桥,丁亮. 功能梯度材料瞬态热传导问题的MLPG方法[J]. 华中科技大学学报(自然科学版), 2007, 35(4):119-121. CHEN J Q, DING L. A MLPG method of transient heat transfer in FGMs[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2007, 35(4):119-121.(in Chinese)
    [5] 李庆华,陈莘莘,薛志清,等. 基于自然元法和精细积分法的功能梯度材料瞬态热传导问题求解[J]. 计算机辅助工程, 2011, 20(3):25-28. LI Q H, CHEN S S, XUE Z Q, et al. Transient heat conduction solution to functionally graded materials based on natural element method and precise integration method[J]. Computer Aided Engineering, 2011, 20(3):25-28.(in Chinese)
    [6] LI Q H, CHEN S S, ZENG J H. A meshless model for transient heat conduction analyses of 3D axisymmetric functionally graded solids[J]. Chinese Physics B, 2013, 22:120204.
    [7] SLADEK J, SLADEK V, HELLMICH C h, et al. Heat conduction analysis of 3D axisymmetric and anisotropic FGM bodies by meshless local Petrov-Galerkin method[J]. Computational Mechanics, 2007, 39:323-333.
    [8] SLADEK J, SLADEK V, KRIVACEK J, et al. Local BIEM for transient heat conduction analysis in 3D axisymmetric functionally graded solids[J]. Computational Mechanics, 2003, 32:169-176.
    [9] SUKUMAR N, MORAN T, BELYTSCHKO T. The natural element method in solid mechanics[J]. International Journal for Numerical Methods in Engineering, 1998, 43(5):839-887.
    [10] SUKUMAR N, MORAN B. C1 natural neighbour interpolation for partial differential equations[J]. Numerical Methods for Partial Differential Equations, 1999, 15(4):417-447.
    [11] 江涛,章青. 直接增强自然单元法计算应力强度因子[J]. 计算力学学报, 2010, 27(2):264-269. JIANG T, ZHANG Q. Computing stress intensity factors by enriched natural element method[J]. Chinese Journal of Computational Mechanics, 2010, 27(2):264-269.(in Chinese)
    [12] 张勇,易红亮,谈和平. 求解辐射导热耦合换热的自然单元法[J]. 工程热物理学报, 2013, 34(5):918-922. ZHANG Y, YI H L, TAN H P. Natural element method for coupled radiative and conductive heat transfer[J]. Journal of Engineering Thermophysics, 2013, 34(5):918-922.(in Chinese)
    [13] 董轶,马永其,冯伟. 弹性力学的杂交自然单元法[J]. 力学学报, 2012, 44(3):568-575. DONG Y, MA Y Q, FENG W. The hybrid natural element method for elasticity[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3):568-575.(in Chinese)
    [14] 曾祥勇,朱爱军,邓安福. Winkler地基上厚板分析的自然单元法[J]. 固体力学学报, 2008, 29(2):163-169. ZENG X Y, ZHU A J, DENG A F. Natural element method for analysis of thick plates lying over Winkler foundation[J]. Chinese Journal of Solid Mechanics, 2008, 29(2):163-169.(in Chinese)
    [15] 周书涛,刘应华,陈莘莘. 基于自然单元法的极限上限分析[J]. 固体力学学报, 2012, 33(1):39-47. ZHOU S T, LIU Y H, CHEN S S. Upper-bound limit analysis based on natural element method[J]. Chinese Journal of Solid Mechanics, 2012, 33(1):39-47.(in Chinese)
    [16] CHEN L, LIEW K M. A local Petrov-Galerkin approach with moving Kriging interpolation for solving transient heat conduction problems[J]. Computational Mechanics, 2011, 47:455-467.
    [17] CARSLAW H S, JAEGER J C. Conduction of heat in solids[M]. Oxford:Clarendon Press, 1959.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李庆华,陈莘莘,徐青.三维轴对称功能梯度材料瞬态热传导问题的自然单元法[J].土木与环境工程学报(中英文),2016,38(2):69-74. Li Qinghua, Chen Shenshen, Xu Qing. Natural element method for transient heat conduction analyse of 3D axisymmetric functionally graded solids[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2016,38(2):69-74.10.11835/j. issn.1674-4764.2016.02.009

复制
分享
文章指标
  • 点击次数:1039
  • 下载次数: 1262
  • HTML阅读次数: 478
  • 引用次数: 0
历史
  • 收稿日期:2015-11-15
  • 在线发布日期: 2016-05-09
文章二维码