冰蓄冷低温送风空调系统(火用)损因素分析
CSTR:
作者:
基金项目:

国家自然科学基金(51578220)


Analysis on exergy loss factors of a novel ice storage system with cold air distribution
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    低温送风空调系统引进新型冰蓄冷设备,采用正丁烷作为制冷剂,制冷剂与水直接接触,换热更强烈且稳定。为了研究该系统相应(火用)损因素条件下的节能薄弱环节,实现系统性能优化,基于该系统及各表冷器(火用)分析模型,分析了热湿比、新风比、送风温差等(火用)损因素对系统(火用)效率和各表冷器(火用)损率的影响。结果表明:当热湿比变化时,处理二次混风的表冷器(火用)损率随之呈正比变化,其他表冷器(火用)损率及系统(火用)效率随之呈反比变化;当新风比变化时,处理新风的两级表冷器(火用)损率随之呈正比变化,其他表冷器(火用)损率及系统(火用)效率随之呈反比变化;当送风温差变化时,处理一次回风的表冷器(火用)损率随之呈正比变化,其他表冷器(火用)损率及系统(火用)效率随之呈反比变化。

    Abstract:

    An exergy analysis model was developed for a novel ice storage system with cold air distribution and its main surface air coolers. Based on this model, the influence of heat and humidity ratio, fresh air ratio and temperature difference between supply air and indoor air on the exergy efficiency of the system and the exergy loss rate of its surface air coolers was studied. Finally the important parameters for system optimization were identified. The simulation results show that the exergy loss rate of the surface air cooler for secondary mixed air is positively proportional to the variation of heat and humidity ratio, while it is inverse for the other; the exergy loss rate of the surface air coolers for fresh air is positively proportional to the variation of fresh air ratio, while it is opposite for the other; the exergy loss rate of the surface air cooler for primary mixed air is positively proportional to the variation of temperature difference between supply air and indoor air, while it is inverse for the other.

    参考文献
    [1] 李蕾,魏兵. 低温变风量空调系统的能耗分析[J]. 低温与超导,2014(9):64-68. LI L.WEI B. Energy consumption analysis of cold air distribution VAV system[J]. Cryogenics & Superconductivity, 2014(9):64-68.(in Chinese)
    [2] LI X W,ZHANG X S, SHUO Q. Evaporative supercooling method for ice production[J]. Applied Thermal Engineering, 2012, 37(1):120-128.
    [3] 邹杰.一种动态冰蓄冷设备:200720058204.6[P]. 2008-10-1. ZOU J. A dynamic ice storage equipment:200720058204.6[P]. 2008-10-1.(in Chinese)
    [4] 邹杰.一种蓄冷设备:201310047656.4[P]. 2013-05-09. ZOU J. A dynamic ice storage equipment:201310047656.4[P]. 2013-05-09.(in Chinese)
    [5] ZHOU X L, LI N P. Research on Energy-saving of new type low-temperature air flow dehumidification system based on exergy analysis method[C]//Proceedings of ISHVAC-COBEE conference, Tianjin, July 12-15, 2015.
    [6] 李念平,孙剑,汤广发. 低温送风空调系统对室内空气环境的影响及技术经济初析[J]. 湖南大学学报(自然科学版),1999(S1):56-61. LI N P, SUN J, TANG G F. Effects of cold air distribution on indoor air environment and analysis of its technology economic[J]. Journal of Hunan University(Natural Science Edition),1999(S1):56-61.(in Chinese)
    [7] 梁坤峰,王林,张林泉,等. 冰蓄冷辐射空调系统方案设计与能耗分析[J]. 低温与超导,2014(2):85-91. LIANG K F, WANG L, ZHANG L Q, et al. Design and energy consumption analysis of a new air-conditioning system[J]. Cryogenics & Superconductivity, 2014(2):85-91.(in Chinese)
    [8] 梁坤峰,任岘乐,贾雪迎,等. 冰蓄冷辐射空调系统运行优化与能耗分析[J]. 制冷技术,2014(6):68-74. LIANG K F, REN X L, JIA X Y, et al. Operation optimization and energy consumption analysis of radiation air conditioning system with ice storage[J]. Refrigeration Technology, 2014(2):85-91.(in Chinese)
    [9] 殷平.空调大温差研究(3):空调送风大温差经济分析[J]. 暖通空调,2000(6):75-76. YIN P. Resrarch of large temperature difference in air conditioning(3):An economical analysis[J]. Journal of HVAC,2000(6):75-76.(in Chinese)
    [10] 王厉.基于(火用)方法的暖通空调系统热力学分析研究[D].长沙:湖南大学,2012. WANG L. Thermodynamics analysis of HVAC systems based on exergy method[D]. Changsha:Hunan University, 2012.(in Chinese)
    [11] 颜志猛,连之伟,王文.一次回风空调系统的(火用)分析[J]. 流体机械,2002(11):58-60. YAN Z M, LIAN Z W, WANG W. Analysis on exergy of air conditioning system with primary return air[J].Fluid Machinery, 2002(11):58-60.(in Chinese)
    [12] HURDOGAN E, BUYUKALACA O, HEPBASLI A. Exergetic modeling and experimental performance assessment of a novel desiccant cooling system[J]. Energy and Buildings, 2011,43(6):1489-1498.
    [13] AHMADI P,DINCER I. Thermodynamic and exergoenvironmental analyses, and multi-objective optimization of a gas turbine power plant[J]. Applied Thermal Engineering, 2011, 32(14/15):2529-2540.
    [14] BALTA M T, DINCER I, HEPBASLI A. Exergoeconomic analysis of a hybrid copper-chlorine cycle driven by geothermal energy for hydrogen production[J]. International Journal of Hydrogen Energy, 2011, 36(17):11300-11308.
    [15] CHEN L G, FENG H J, SUN F R. Exergoeconomic performance optimization for a combined cooling,heating and power generation plant with an endoreversible closed Brayton cycle[J]. Mathematical and Computer Modeling, 2011, 54(11/12):2785-2801.
    [16] OZGENER L. A review on the experimental and analysis of earth to air heat exchange(EAHE) systems in Turkey[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9):4483-4490.
    [17] AHAMED J U, SAIDUR R, MASJUKI H H. A review on exergy analysis of vapor compression refrigeration system[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3):1593-1600.
    [18] HEPBASLI A. A comparative investigation of various greenhouse heating options using exergy analysis methos[J]. Applied Energy, 2011, 88(12):4411-4423.
    [19] MOROSUK T, TSATSARONIS G. Comparative evaluation of LNG-based cogeneration systems using advanced exergetic analysis[J]. Energy, 2011, 36(6):3771-3778.
    [20] 卓金武. MATLAB在数学建模中的应用[M]. 北京:北京航空航天大学出版社,2011. ZHUO J W. The application of MATLAB in mathematical modeling[M]. Beijing:Beijing University of Aeronautics and Astronautics, 2011.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周学丽,李念平,邹杰.冰蓄冷低温送风空调系统(火用)损因素分析[J].土木与环境工程学报(中英文),2016,38(2):132-137. Zhou Xueli, Li Nianping, Zou Jie. Analysis on exergy loss factors of a novel ice storage system with cold air distribution[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2016,38(2):132-137.10.11835/j. issn.1674-4764.2016.02.018

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-08-12
  • 在线发布日期: 2016-05-09
文章二维码