模式识别的斜拉桥损伤诊断动力指纹与识别算法
CSTR:
作者:
基金项目:

国家自然科学基金(51408379);河北省自然科学基金(E2013210104、E2013210125、E2016210087);河北省重点学科建设(桥梁与隧道工程).


Dynamic fingerprint and identification algorithm for damage diagnosis of cable stayed bridge based on pattern recognition
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为有效并准确诊断出斜拉桥损伤,对基于模式识别的斜拉桥损伤诊断方法进行了研究。选取易于测试出的低阶模态频率和部分关键点竖向振型数据为动力指纹,无需模态扩展或模型缩聚。研究并采用全因子设计进行动力指纹库的创建,可精确评估设定的损伤因子及其交互作用对损伤识别结果的影响。设计并增加了带随机误差的动力指纹库样本集。编制了基于Matlab的模式识别的多种算法,重点研究了精确度高的多层感知器识别算法及其提高该算法预测准确率的装袋集成算法。最后给出一座单塔双跨双索面斜拉桥的多种识别算法的损伤诊断过程和结果,得到一种可包容测试随机误差的高精确度斜拉桥损伤诊断评估模型。

    Abstract:

    In order to effectively and accurately diagnosis the damage of cable stayed bridge, the damage diagnosis method of cable stayed bridge based on pattern recognition was studied. The low order modal frequency and vertical vibrational mode of some key points were selected for dynamic fingerprints of no modal expansion or model condensation. The full factorial design was used to create the dynamic fingerprint database, which could accurately evaluate the damage factors and their interaction effects on the damage identification results. And the dynamic fingerprint database with random error was designed and added. The pattern recognition algorithms based on MATLAB were compiled. The high accuracy of the multilayer perceptron recognition algorithm and the algorithm to improve the prediction accuracy of the bagging ensemble algorithm were mainly studied. In the end, the damage diagnosis process and results of a single tower double span double cable planes cable stayed bridge were presented, and a high precision evaluation model covering random errors for damage diagnosis of cable stayed bridges was obtained.

    参考文献
    [1] 吴向男,徐岳,梁鹏,等.桥梁结构损伤识别研究现状与展望[J].长安大学学报(自然科学版),2013,33(6):49-58.WU X N,XU Y,LIANG P,et al.Research status and prospect of bridge structure damage identification[J].Journal of Chang'an University (Natural Science Edition),2013,33(6):49-58.(in Chinese)
    [2] 刘宇飞,辛克贵,樊健生,等.环境激励下结构模态参数识别方法综述[J].工程力学,2014,31(4):46-53.LIU Y F,XIN K G,FAN J S,et al.An overview of modal identification from ambient responses[J].Electronic Test,2014,31(4):46-53.(in Chinese)
    [3] 高维成,刘伟,邹经湘.基于结构振动参数变化的损伤探测方法综述[J].振动与冲击,2004,23(4):3-9.GAO W C,LIU W,ZOU J X.Dynamic modeling and analisis of natural vibration of the three_dimensions shaking table for vibration strengthening and polishing technology[J].Journal of Vibration and Shock,2004,23(4):3-9.(in Chinese)
    [4] 黄方林,王学敏,陈政清,等.大型桥梁健康监测研究进展[J].中国铁道科学,2005,26(2):4-10.HUANG F L,WANG X M,CHEN Z Q,et al.Research progress made on the health monitoring for large-type bridges[J].China Railway Science,2005,26(2):4-10.(in Chinese)
    [5] 王志坚,韩西,钟厉,等.基于结构动力参数的土木工程结构损伤识别方法[J].重庆建筑大学学报,2003,25(4):128-132.WANG Z J,HAN X,ZHONG L,et al.Review of damage identification of civil engineering structures based on dynamic parameters[J].Journal of Chongqing Jianzhu University,2003,25(4):128-132.(in Chinese)
    [6] 杨秋伟.基于振动的结构损伤识别方法研究进展[J].振动与冲击,2007,26(10):86-91.YANG Q W.A review of vibration-based structural damage identificationmethods[J].Journal of Vibration and Shock,2007,26(10):86-91.(in Chinese)
    [7] 袁旭东,高潮,高少霞.量测模态数量对结构损伤识别影响数值模拟研究[J].工程力学,2007,24(Sup1):75-78.YUAN X D,GAO C,GAO S X.A numerical simulation for inflence of measurement mode quantity on structural damage idenfification[J].Engineering Mechanics,2007,24(Sup1):75-78.(in Chinese)
    [8] 孙志军,薛磊,许阳明.基于深度学习的边际Fisher分析特征提取算法[J].电子与信息学报,2013,35(4):805-811.SUN Z J,XUE L,XU Y M.Marginal fisher feature extraction algorithm based on deep learning[J].Journal of Electronics&Information Technology,2013,35(4):805-811.(in Chinese)
    [9] 冯新,李国强,范颖芳.几种常用损伤动力指纹的适用性研究[J].振动、测试与诊断,2004,24(4):23-26.FENG X,LI G Q,FAN Y F.Application of phase power spectrum based on complex wavelet transform to fault diagnosis of gears[J].Journal of Vibration,Measurement&Diagnosis,2004,24(4):23-26.(in Chinese)
    [10] 朱劲松,肖汝诚.大跨度PC斜拉桥结构快速分析神经网络模型[J].中国铁道科学,2007,28(1):33-39.ZHU J S,XIAO R C.Neural network model to structural simulation of large-span pc cable-stayed bridges[J].China Railway Science,2007,28(1):33-39.(in Chinese)
    [11] 张学工.模式识别([M].北京:清华大学出版社,2010:13-144.
    [12] DONG X M,WANG Z H.Damage severity assessment using modified BP neural network[C]//Materials Science and Engineering,2010 International Conference on Materials Science and Engineering Science.Shenzhen,China:Trans Tech Publications,2011:1016-1020.(in Chinese)
    [13] DIAO Y S,YU F,MENG D M.Structural damage localization based on AR model and BP neural network[C]//Advances in Structural Engineering,2011 International Conference on Civil Engineering andTransportation.Jinan,China:Trans Tech Publications,2011:1211-1215.
    [14] 饶文碧,谈怀江,Bostrom Henrik.基于归纳学习的结构损伤识别方法研究[J].西安交通大学学报,2005,39(2):142-145.RAO W B,TAN H J.Detection of structural damage by inductive learning methods[J].Journal of Xi'an Jiaotong University,2005,39(2):142-145.(in Chinese)
    [15] ADHVARYU P,PANCHAL M.A review on diverse ensemble methods for classification[J].Journal of Computer Engineering,2012,1(4):27-32.
    [16] MORDELET F,VERT J P.A bagging SVM to learn from positive and unlabeled examples[J].Pattern Recognition Letters,2014,37:201-209.
    [17] ADLER W,BRENNING A.Ensemble classification of paired data[J].Computational Statistics and Data Analysis,2011,55:1933-1941.
    [18] BI K,WANG X D,YAO X,et al.Adaptively selective ensemble algorithm based on bagging and confusion matrix[J].Acta Electronica Sinica,2014,42(4):711-716.
    [19] KER A,BAS P,BOHME R,et al.Moving steganography and steganalysis from the laboratory into the real world[C]//Proc.of ACM Workshop on Information Hiding and Multimedia Security,2013:45-58.
    [20] TIAN J,LI M Q,CHEN F Z,et al.Coevolutionary learning of neural network ensemble for complex classification tasks[J].Pattern Recognition,2012,45(4):1373-1385.
    [21] ]DENEMARK T,FRIDRICH J,HOLUB V.Further study on the security of S-UNIWARD[C]//Prec.of SPIE,2014,9028:45-55.
    [22] 王海龙,刘杰,王新敏,等.建立斜拉桥基准有限元模型的新方法与实现[J].振动、测试与诊断,2014,34(3):458-462.WANG H L,LIU J,WANG X M,ZHANG Z G.et al.A new method and it's implementation of building baseline FE model of cable-stayed bridge[J].Journal of Vibration,Measurement&Diagnosis,2014,34(3):458-462.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘杰,王海龙,张志国,吴立朋.模式识别的斜拉桥损伤诊断动力指纹与识别算法[J].土木与环境工程学报(中英文),2016,38(4):115-123. Liu Jie, Wang Hailong, Zhang Zhiguo, Wu Lipeng. Dynamic fingerprint and identification algorithm for damage diagnosis of cable stayed bridge based on pattern recognition[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2016,38(4):115-123.10.11835/j. issn.1674-4764.2016.04.017

复制
分享
文章指标
  • 点击次数:1383
  • 下载次数: 1000
  • HTML阅读次数: 478
  • 引用次数: 0
历史
  • 收稿日期:2016-03-15
  • 在线发布日期: 2016-08-15
文章二维码