[关键词]
[摘要]
传统大体积混凝土通水冷却施工多采用人工监控温度,存在数据采集处理不及时、监测数据准确性差、温度控制效率低等问题,针对这些问题,开发一种BIM智能温控系统。具体方法为:选择Revit、Navisworks等BIM软件进行二次开发;利用控制计算机、温度数据采集设备、自控阀门循环水泵、无线网络通讯及桥接设备、工业集成软件服务器及客户机等搭建温度测控系统;建立温度预警机制并搭载人工智能控制算法,通过无线传输接收测温元件传递的数据,系统自动判别温度异常情况并控制冷却水管阀门的开关;在BIM实体模型中标记实际测温点的相对应位置,使系统以三维形式同步直观反映相应测温点位置混凝土温度曲线变化,并提供预警功能。系统在寸滩长江大桥中进行了测试,结果表明,系统采集数据准确灵敏且预警及时,温度采集的精确度和效率均得到提高,温度控制较为理想。
[Key word]
[Abstract]
The traditional construction of mass concrete water cooling usually adopted artificial monitoring method,which had problems such as Lag data acquisition and processing, poor monitoring data accuracy and low temperature control efficiency. A control system of mass concrete based on BIM was put forward to solve these problems. Revit and Navisworks were selected for secondary development. The temperature measurement and control system were established by using the control computer, temperature data acquisition device, control valve circulating pump, wireless network communication and bridging equipment, industrial integration server and client software. The data transmitted by the wireless transmission receiving temperature measuring element, the system could distinguish the abnormal temperature of the temperature and send the instruction to realize the automatic switch of the cooling water pipe valve. The BIM entity model was built in the system platform, and the relative position of the actual temperature measurement point was marked in the model. Then the system was synchronized with the three dimensional form to reflect the temperature curve of the temperature measuring point. This system was tested in the Cuntan Yangtze River Bridge, showing that the system data was accurate and sensitive early warning in time, the accuracy and efficiency of temperature acquisition were improved, and the temperature control was ideal.
[中图分类号]
[基金项目]
重庆建设科技计划(2015-2-3)