多孔烧结陶片吸水特性实验方法
CSTR:
作者:
基金项目:

国家自然科学基金(51590912、51308223、51678243、51308222);广东省自然科学基金(2016A030313506);亚热带建筑科学国家重点实验室自主课题(2015ZC14)


Experimental methods for water absorption characteristics of porous firing clay tiles
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    建筑被动蒸发降温效益以多孔材料吸水特性为基础。以广泛应用的多孔烧结陶片为例,相关参数测试方法标准并不一致。笔者参考国际标准采用“单面浸泡法”测试了3种多孔陶片的毛细吸水系数及毛细饱和含水率,实验结果表明,在第1吸水阶段,材料孔隙率与毛细吸水系数及毛细饱和含水率呈现显著正相关关系。参考中国标准,采用“整体浸泡法”和“真空饱和法”测试了上述3种材料在水中浸泡24 h后的含水率,并与“单面浸泡法”测试结果进行了对比研究,结果显示,后者实验结果分别比前两者低3.25%和21.58%。研究表明,第1阶段吸水速率高的材料具有更高毛细饱和含水率,此种陶片更适宜蒸发降温应用。测试方法上单面浸泡法优于整体浸泡法。采用重复性误差衡量实验精确度,分析结果表明上述实验的重复性误差均低于2.40%。

    Abstract:

    Efficiency of building passive cooling is based on the water absorption characteristics. Illustrated by the example of porous firing clay tiles, test methods are different between national and international standards. Capillary water absorption coefficients and capillary saturated water contents of three kinds of porous face tile are measured through partial immersion method referred to the international standard. The results show that both porosity/capillary absorption coefficient and porosity/capillary saturated water content have a linear positive correlation. Water contents after 24 hours absorption are measured through integral immersion method referred to the national standard, and vacuum saturation method. The results are compared to those abtained through partial immersion. It is showed that the results of partial immersion is less than the results of integral immersion by 3.25%, and less than the results of vacuum saturation by 21.58%. The result shows that higher capillary water absorption coefficients means higher capillary saturated water contents. The corresponding kind of tile is more suitable for passive cooling. For the test method, partial immersion is more appropriate than integral immersion. Repeatability errors of all the tests are under 2.40%, showing high precisions.

    参考文献
    [1] 孟庆林, 胡文斌, 张磊,等. 建筑蒸发降温基础[M]. 北京:科学出版社, 2006:1-20. MENG Q L, HU W B, ZHANG L, et al. Building evaporation cooling foundation[M]. Beijing:Science Ress, 2006.(in Chinese)
    [2] 张磊, 刘习康, 孟庆林,等. 多孔饰面砖墙体蒸发降温效果试验研究[J]. 建筑材料学报, 2014(6):1036-1042,1048. ZHANG L, LIU X K, MENG Q L, et al. Experimental study of evaporative cooling capacities of wall with porous face brick[J]. Journal of Building Materials, 2014(6):1036-1042,1048.(in Chinese)
    [3] BRANDE T V D, BLOCKEN B, ROELS S. Rain water runoff from porous building facades:implementation and application of a first-order runoff model coupled to a HAM model[J]. Building and Environment, 2013, 64:177-186.
    [4] MUKHOPADHYAYA P, KUMARAN K, NORMANDIN N, et al. Effect of surface temperature on water absorption coefficient of building materials[J]. Journal of Building Physics, 2002, 26(2):179-195.
    [5] CARMELIET J, HENS H, ROELS S, et al. Determination of the liquid water diffusivity from transient moisture transfer experiments[J]. Journal of Thermal Envelope and Building Science, 2004, 27(4):277-305.
    [6] NIZOVTSEV M I, STANKUS S V, STERLYAGOV A N, et al. Determination of moisture diffusivity in porous materials using gamma-method[J]. International Journal of Heat and Mass Transfer, 2008, 51(17):4161-4167.
    [7] HANŽIŽČL, KOSEC L, ANŽEL I. Capillary absorption in concrete and the lucas-washburn equation[J]. Cement and Concrete Composites, 2010, 32(1):84-91.
    [8] FENG C, JANSSEN H, FENG Y, et al. Hygric properties of porous building materials:Analysis of measurement repeatability and reproducibility[J]. Building and Environment, 2015, 85:160-172.
    [9] Hygrothermal performance of building materials and products-determination of water absorption coefficient by partial immersion:EN ISO 15148[S].2002.
    [10] ZHU Y G, KOU S C, POON C S, et al. Influence of silane-based water repellent on the durability properties of recycled aggregate concrete[J]. Cement and Concrete Composites, 2013, 35(1):32-38.
    [11] CNUDDE V, DE BOEVER W, DEWANCKELE J, et al. Multi-disciplinary characterization and monitoring of sandstone (kandla grey) under different external conditions[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2013, 46(1):95-106.
    [12] GRILO J, FARIA P, VEIGA R, et al. New natural hydraulic lime mortars-physical and microstructural properties in different curing conditions[J]. Construction and Building Materials, 2014, 54:378-384.
    [13] WALKER R, PAVÍA S. Moisture transfer and thermal properties of hemp-lime concretes[J]. Construction and Building Materials, 2014, 64:270-276.
    [14] Natural stone test methods-determination of water absorption by capillarity:EN 1925[S]. 1999.
    [15] 砌墙砖试验方法:GB/T 2542-2012[S].北京:中国标准出版社,2013. Test methods for wall bricks:GB/T 2542-2012[S].Beijing:Standerd Press of China,2013.(in Chinese)
    [16] Natural strone test methods-Determination of real density and apparent density, and of total and open porosity:EN 1936[S]. 2006.
    [17] Standard Test Method for Moisture Retention Curves of Porous Building Materials Using Pressure Plates:ASTM C 1699-09[S].
    [18] Accuracy (trueness and precision) of measurement methods and results-Part 2:Basic method for the determination of repeatability and reproducibility of a standard measurement method:ISO 5725-2[S].2002.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

潘振皓,张磊,孟庆林,李琼,任鹏.多孔烧结陶片吸水特性实验方法[J].土木与环境工程学报(中英文),2017,39(1):26-31. Pan Zhenhao, Zhang Lei, Meng Qinglin, Li Qiong, Ren Peng. Experimental methods for water absorption characteristics of porous firing clay tiles[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2017,39(1):26-31.10.11835/j. issn.1674-4764.2017.01.005

复制
分享
文章指标
  • 点击次数:1612
  • 下载次数: 1226
  • HTML阅读次数: 509
  • 引用次数: 0
历史
  • 收稿日期:2016-09-02
  • 在线发布日期: 2017-02-08
文章二维码