低气压环境被服系统总热阻计算模型
CSTR:
作者:
中图分类号:

TU831.8

基金项目:

国家自然科学基金(51278506)


Calculation model of total thermal resistance of bedding and clothing system in low pressure environments
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    服装热阻是影响人体热舒适的重要因素之一,夜间睡眠状态下的被服系统总热阻包括人体所穿服装热阻与整个床褥系统热阻。针对低气压环境,目前,尚缺乏被服热阻实验数据,也没有可参考的被服系统总热阻的理论计算模型。以人体睡眠状态被服系统总热阻计算方法为依据,引入气压修正项对相关参数进行修正,建立了适用于低气压环境的被服系统总热阻的修正计算模型,并用模型计算了冬夏典型被服系统总热阻,分析了气压减小对总热阻的影响,发现冬夏季被服系统总热阻均随大气压力降低而升高,增加百分比最大值均为42%,且均出现在被子覆盖率为23.3%的条件下,当海拔低于3 000 m时,由被子覆盖率引起的被服系统总热阻增加系数不超过0.05。

    Abstract:

    Clothing thermal resistance is a key factor that affects the thermal comfort of human body. The total thermal resistance of bedding and clothing system in sleeping at night includes the clothing system resistance and the body of the mattress system. In the low pressure environment, there is still a lack of experimental data and calculation model of thermal resistance, with no reference to theory models. In this paper, based on calculation method of the total thermal resistance of bedding and clothing system in sleeping, the calculation model of total thermal resistance in low pressure environment is established by the introduction of pressure correction of related parameters. The typical total thermal resistance both summer and winter is calculated using the model. The variation rules of total thermal resistance caused by the pressure reducing is obtained. At altitude of less than 3000m, the increasing coefficient of total thermal resistance of bedding and clothing system caused by the coverage ratio of blanket is not more than 0.05. The total thermal resistances both winter and summer increase with atmospheric pressure decreasing. There is a same maximum percentage of 42% under the condition of 23.3% of blanket coverage.

    参考文献
    [1] NOL D Y, REN T D, DONATIEN N. Thermal comfort: A review paper [J]. Renewable and Sustainable Energy Reviews, 2010, 14:2626-2640.
    [2] THAMMANOON S, VEERAPOL M, SIRICHAI T. Assessment of the thermal environment effects on human comfort and health for the development of novel air conditioning system in tropical regions [J]. Energy and Buildings, 2010, 42:1692-1702.
    [3] 倪冬香,范秦寅,TAKAO ITAMI.考虑了人体新陈代谢的乘员舱舒适性分析[C]//第五届中国 CAE工程分析技术年会论文集,2009:425-429. NI D X, FAN Q Y, TAKAO I. Analysis of occupant comfort in human body metabolism [C]//Proceedings of the Fifth China CAE Engineering Analysis Technology Symposium, 2009: 425-429.
    [4] 田元媛,许为全.热湿环境下人体热反应的实验研究[J]. 暖通空调,2003,33(4):27-30. TIAN Y Y, XU W Q. experimental study on thermal environment for the whole human thermal response[J]. HV & AC, 2003,33(4):27-30.
    [5] ASHRAE. ASHRAE handbook of fundamentals[S]. 2010.
    [6] LIN Z P, DENG S M. A study on the thermal comfort in sleeping environments in the subtropics—Measuring the total insulation values for the bedding systems commonly used in the subtropics [J]. Building and Environment, 2008,43: 905-916.
    [7] 潘冬梅.睡眠环境人体热舒适实验研究[D].上海:同济大学,2009:21-30. PAN D M. Human thermal comfort sleep environment experimental study [D].Shanghai: Tongji University, 2009: 21-30.
    [8] KIM J S, OH H B, KIM A H. Radiative and convective heat transfer coefficients of the human body in natural convection[J]. Building and Environment, 2008,12(43):2142-2153.
    [9] KANDJOV I. Wärme-und masseaustausch zwischen menschlichem Körper und Umgebungsluft. Einwirkung der Meereshöhe [J]. Phys Rehab Kur Med, 1988, 40(5):299-306.
    [10] KANDJOV I M. Heat and mass exchange processes between the surface of the human body and ambient air at various altitudes [J]. International Journal of Biometeorology, 1999, 43(1): 38-44.
    [11] RICHARD J D, ARENS E, HUI Z, et al. Convective and radiative heat transfer coefficients for individual human body segments [J]. International Journal of Biometeorology, 1997,40(3): 141-156.
    [12] 杨世铭,陶文铨.传热学[M]. 北京:高等教育出版社,2006:256-269. YANG S M, TAO W Q. Heat transfer [M]. Beijing: Higher Education Press, 2006:256-269.
    [13] GAGGE A P. A standard predictive index of human response to the thermal environment[J]. ASHRAE Trans, 1986, 92: 709-731.
    [14] 刘国丹.无症状高原反应域低气压环境下人体热舒适研究[D].西安:西安建筑科技大学,2008:49-55. LIU G D. Asymptomatic high altitude reaction in the low pressure environment of human thermal comfort study [D]. Xi'an:Xi'an University of Architecture and Technology, 2008: 49-55.
    [15] YOSHIHITO, KURAZUMI, TADAHIRO, et al. Radiate and convective heat transfer coefficient of the human body in natural convection [J]. Building and Environment, 2008, 43(12):2413-2153.
    [16] 火力发电厂燃烧系统设计计算技术规程:DL/T 5240—2010[S]. Technical code for design and calculation of combustion system in thermal power plant:DL/T 5240-2010 [S].
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张华玲,姚大军,洪诗尧.低气压环境被服系统总热阻计算模型[J].土木与环境工程学报(中英文),2017,39(4):6-10. Zhang Hualing, Yao Dajun, Hong Shiyao. Calculation model of total thermal resistance of bedding and clothing system in low pressure environments[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2017,39(4):6-10.10.11835/j. issn.1674-4764.2017.04.002

复制
分享
文章指标
  • 点击次数:1679
  • 下载次数: 1527
  • HTML阅读次数: 458
  • 引用次数: 0
历史
  • 收稿日期:2016-10-19
  • 在线发布日期: 2017-06-15
文章二维码