混沌局域法与神经网络组合供水量预测
CSTR:
作者:
中图分类号:

TP183

基金项目:

国家自然科学基金(51608242)


Water supply forecasting based on the combination of chaotic local-region method and neural network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    城市供水量是非线性、非平稳时间序列,组合预测模型能获得更高精度预测结果。通过深入分析混沌局域法与神经网络预测模型特点,提出了一种新的组合预测模型。首先,应用混沌局域法对城市日供水量进行初预测,然后,应用神经网络对预测结果进行修正。由于所提出的组合模型利用了混沌局域法及神经网络进行优势互补,能同时提高预测精度与计算效率。为验证所提出组合预测模型的可行性,采用某市7 a实测供水量数据,对混沌局域法、BPNN、RBF及GRNN神经网络4种单一预测模型及相应的3种组合模型预测精度进行定量分析,结果表明,组合预测模型精度都高于对应单一预测模型,混沌局域法与GRNN神经网络组合模型预测精度最高,且运算时间远低于单一神经网络模型运算时间。

    Abstract:

    Urban water supply is a nonlinear and non-stationary time series, and the combination forecasting model can get more accurate results. Through in-depth analysis of chaotic local-region method and neural network prediction model, this paper puts forward a new combination forecasting model, which uses chaotic local-region method to make a preliminary forecast for urban daily water supply, and then the prediction result is updated by neural network. The proposed combined model makes use of complementary advantages of the chaotic local-region method and the neural network, improving synchronously the accuracy and computational efficiency of the prediction results. To verify the proposed model, the prediction accuracy of the four single prediction models of Chaotic local-region method,BPNN, RBF and GRNN neural network and three corresponding combined models are analyzed quantitatively using seven years water supply data. The results show that combination forecasting model is of higher accuracy than single prediction model, and chaotic local-region method plus GRNN neural network combination model has highest accuracy with much lower computation time than single neural network predication model.

    参考文献
    [1] YASAR A, BILGILI M, SIMSEK E. Water demand forecasting based on stepwise multiple nonlinear regression analysis[J]. Arabian Journal for Science and Engineering, 2012, 37(8):2333-2341.
    [2] 孙月峰,闫雅飞,张表志.基于T-S模型的模糊神经网络城市需水量预测方法研究[J].安全与环境学报, 2013, 13(2):136-139. SUN Y F, YAN Y F, ZHANG B Z. Fuzzy neural network method based on the T-S model for the urban water demand forecasting and its application[J]. Journal of Safety and Environment, 2013,13(2):136-139.(in Chinese)
    [3] PAI Y, PU W, CHUAN L, et al. Dynamic forecast of daily urban water consumption using variable-structure support vector regression model[J]. Journal of Water Resource Planning and Management, 2014, 140:1943-5452.
    [4] TIWARI M K, ADAMOWSKI J. Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models[J]. Water Resources Research, 2013, 49(10):6486-6507.
    [5] BAI Y, WANG P, LI C,et al. A multi-scale relevance vector regression approach for daily urban water demand forecasting[J]. Journal of Hydrology, 2014, 517:236-245.
    [6] 陈敏,邓英伟.基于混沌理论的城市用水量预测研究[J].计算技术与自动化,2009,28(1):88-90. CHEN M, DEN Y W. Forecast research of urban water consumption based on chaos theory[J].Computing Technology and Automation, 2009,28(1):88-90.(in Chinese)
    [7] 韩敏.混沌时间序列预测理论与方法[M].北京:中国水利水电出版社,2007:28-39. HAN M. Prediction theory and method of chaotic time series[M].Beijing:China Water & Power Press, 2007:28-39.(in Chinese)
    [8] 史峰,王小川,郁磊.MATLAB神经网络30个案例分析[M].北京:北京航空航天大学出版社,2011:73-80. SHI F, WANG X C, YU L. 30 case analysis of MATLAB neural network[M].Beijing:Beihang University Press,2011:73-80.(in Chinese)
    [9] 林海军,滕召胜,迟海,等. 基于多RBF神经网络的汽车衡误差补偿[J].湖南大学学报(自然科学版),2010,37(5):40-44. LIN H J, TENG Z S, CHI H, et al. Error compensation for truck scale based on multiple RBF neural networks[J].Journal of Hunan University (Natural Sciences), 2010,37(5):40-44.(in Chinese)
    [10] TAKENS F. Determining strange attractors in turbulence[J]. Lecture Notes in Mathematics, 1981, 898:361-381.
    [11] 刘年东,杜坤,周明,等.局域法邻近点选取对降雨量预测精度影响研究[J].给水排水, 2016(Sup1):285-288. LIU N D, DU K, ZHOU M, et al. Study on the influence of select the local-region method nearest neighbours on rainfall forecasting accuracy[J]. Water & Wastewater and Drainage, 2016(Sup1):285-288.(in Chinese)
    [12] CARLOS C, MUÑOZ-COLLAZOS H, URBANO-MUÑOZ R. Clustering of web search results based on the cuckoo search algorithm and Balanced Bayesian Information Criterion[J]. Information Sciences, 2014, 281:248-264.
    [13] TAORMINA R, CHAU K, SETHI R. Artificial neural network simulation of hourly 4 groundwater levels in a coastal aquifer system of the 5 Venice lagoon[J]. Engineering Applications of Artificial Intelligence, 2012, 25 (8):1670-1676.
    [14] KARSOLIYA S. Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture[J]. International Journal of Engineering Trends and Technology, 2012, 3(6):714-717.
    [15] 戴张俊,余飞,陈善雄,等.淮北平原地基分层与承载力的BP网络预测方法[J].土木建筑与环境工程, 2013,35(3):18-24. DAI Z J, YU F, CHEN S X, et al. Stratification and bearing capacity prediction method based on BP neural network for foundation in Huaibei Plain[J]. Journal of Civil, Architectural & Environmental Engineering, 2013,35(3):18-24. (in Chinese)
    [16] TSEKOURASA G E, TSIMIKASB J.On training RBF neural networks using input-output fuzzy clustering and particle swarm optimization[J]. Science Direct Fuzzy Sets and Systems,2013, 221:65-89.
    [17] 戴虹,钱晋武,张震,等. GRNN在肌电预测踝关节运动中的应用[J].仪器仪表学报, 2013,34(4):846-851. DAI H, QIAN J W, ZHANG Z, et al. Application of GRNN in ankle movement prediction based on surface electromyography[J]. Chinese Journal of Scientific Instrument, 2013,34 (4):846-851.(in Chinese)
    [18] FIRATA M,TURANB M E, YURDUSEV M A. Comparative analysis of neural network techniques for predicting water consumption time series[J]. Journal of Hydrology, 2010, 384:46-51.
    [19] 赵莹,卢文喜,罗建男,等.基于改进时间序列分析法的镇赉地区地下水位动态分析[J].水利学报,2013,44(11):1372-1379. ZHAO Y,LU W X,LUO J N, et al. Dynamic analysis of groundwater table in Zhenlai county of Jilin province based on the improved time series analysis method[J]. Shuili Xuebao, 2013,44(11):1372-1379.(in Chinese)
    [20] 刘道文,忽海娜.基于多嵌入维加权一阶局域法煤矿灾害混沌时间序列预测[J].煤炭技术,2012,31(8):89-91. LIU D W, HU H N. Chaotic time series prediction of coal mine disasters based on multi-dimensional weighted first-order embedded local-region method[J]. Coal Technology, 2012,31(8):89-91. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙晓婷,刘年东,杜坤,周明,任刚红.混沌局域法与神经网络组合供水量预测[J].土木与环境工程学报(中英文),2017,39(5):135-139. Sun Xiaoting, Liu Niandong, Du Kun, Zhou Ming, Ren Ganghong. Water supply forecasting based on the combination of chaotic local-region method and neural network[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2017,39(5):135-139.10.11835/j. issn.1674-4764.2017.05.019

复制
分享
文章指标
  • 点击次数:833
  • 下载次数: 851
  • HTML阅读次数: 494
  • 引用次数: 0
历史
  • 收稿日期:2017-02-05
  • 在线发布日期: 2017-10-11
文章二维码