严寒地区地埋管换热器周围土壤冻结区域分布特征实验研究
CSTR:
作者:
中图分类号:

TK529

基金项目:

内蒙古自治区自然科学基金(2014MS0530、2015MS0561)


Experimental analysis of the distribution characteristics of the frozen soil area around ground heat exchanger in cold region
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    建立了模拟严寒地区土壤热失衡状态下地源热泵冬季运行情况的实验装置,实验研究了地埋管周围土壤冻结区域的分布特征,给出了冻结相变锋面的平均移动速度。结果表明,土壤冻结区域呈不对称性分布,流体进口温度为-15℃时,埋深为350、700、1 050 mm,热响应区在40~60 mm段,冻结锋面的平均移动速率分别为5、5、6.67 mm/h,热响应区在60~80 mm段,冻结锋面的平均移动速率分别为1.54、1.82、1.82 mm/h;土壤冻结在一定程度上有利于地埋管与周围土壤之间的换热,在严寒地区地源热泵的设计中应考虑土壤冻结现象。

    Abstract:

    An experimental device is established in this paper, the operating condition of ground source heat pump under the condition of soil thermal imbalance in cold region in winter is simulated. The experiment studies the distribution characteristics of the frozen soil area around the buried pipe, and gets the average moving speed of freezing front. The results show that the distribution of frozen soil area is asymmetric. When the fluid inlet temperature is -15℃ and buried depth is 350,700 and 1 050 mm, the average moving speed of freezing front is 5,5 and 6.67 mm/h in the heat response areas of 40~60 mm, and the average moving speed of freezing front is 1.54, 1.82 and 1.82 mm/h in the heat response areas of 60~80 mm. The frozen soil to a certain extent in favor of heat transfer between buried pipe and surrounding soil, so the frozen soilshould be considered in the design of GSHP in cold area.

    参考文献
    [1] 韩斯东,金光,毕文明,等. 某地源热泵地浅层土壤分层热物性响应实验[J]. 水文地质工程地质,2015,42(4):144-149. HAN S D,JIN G,BI W M,et al. Test of shallow soil thermal properties of layered thermal response of a ground source heat pump system in a certain place[J]. Hydrogeology & Engineering Geology, 2015, 42(4):144-149.(in Chinese)
    [2] 毕文明,岳丽燕,韩再生,等. 地埋管换热性能综合微缩实验研究[J]. 水文地质工程地质,2014,41(1):144-148. BI W M,YUE L Y,HAN Z S,et al. A comprehensive miniature test study of buried tube heat exchange performance[J]. Hydrogeology & Engineering Geology,2014,41(1):144-148.(in Chinese)
    [3] 金光,王正文,吴晅,等. 混合式土壤源热泵系统的研究现状及展望[J].流体机械,2016,44(2):82-88. JIN G,WANG Z W,WU X,et al. Research status and prospect of hybrid ground source heat pump systems[J]. Fluid Machinery, 2016, 44(2):82-88(in Chinese)
    [4] 杨卫波,张苏苏. 冷热负荷非平衡地区土壤源热泵土壤热失衡研究现状及其关键问题[J]. 流体机械,2014,42(1):80-87. YANG W B,ZHANG S S. Research status and key problem of underground thermal unbalance of ground coupled heat pump operated in districts with unbalanced cooling and heating load[J]. Fluid Machinery, 2014, 42(1):80-87.(in Chinese)
    [5] HU T,ZHU J L,ZHANG W.Performance anaylsis of a heat pump system with hybrid heat sources[J].Acta Energiae Solaris Sinica,2012,22(1):37-42.
    [6] ZHANG L F, ZHANG Q, HUANG G S, et al. A p(t)-linear average method to estimate the thermal parameters of the borehole heat exchangers for in situ thermal response test[J]. Applied Energy, 2014, 131:211-221.
    [7] YU X,WANG R Z,ZHAI X Q, Year round experimental study on a constant temperature and humidity air-conditioning system driven by ground source heat pump[J].Energy,2011,36(2):1309-1318.
    [8] YANG W,ZHANG S S,CHEN Y P. A dynamic simulation method of ground coupled heat pump system based on borehole heat exchange effectiveness[J].Energy and Buidings,2014(77):17-27
    [9] SHANG Y, LI S F, LI H J. Analysis of geo-temperature recovery under intermittent operation of ground-source heat pump[J]. Energy and Buildings,2011,43(4):935-943.
    [10] BOUHACINA B, SAIM R, BENZENINE H, et al. Analysis of thermal and dynamic comportment of a geothermal vertical U-tube heat exchanger[J].Energy and Buildings,2013,58:37-43.
    [11] LI S H, YANG W H,ZHANG X S. Soil temperature distribution around a U-tube heat exchanger in a mufti-function ground source heat pump system[J]. Applied Thermal Engineering,2009,29:3679-3686.
    [12] 苑中显,叶芳,陈峰,等. 人工土壤冻结过程的计算机模拟[J]. 工程热物理学报,2000,21(4):479-482. YUAN Z X,YE F,CHEN F,et al. Computational simulation to the artificially freezing process of shaft support in earth[J]. Journal of Engineering Thermophysics,2000,21(4):479-482. (in Chinese)
    [13] 季阿敏,李杰,糜仁华,等. 土壤冻结时间的数值模拟及实验[J]. 哈尔滨商业大学学报,2004,20(4):492-495. JI A M,LI J,MI R H,et al. Study on numerical simulation of freezing time of soil and experimental designed for its reliability[J]. Journal of Harbin University of Commerce,2004,20(4):492-495.(in Chinese)
    [14] 于明志,方肇洪,李明钧,等. 土壤冻结对地下换热器传热的影响[J]. 山东建筑工程学院学报,2001,6(1):42-46. YU M Z,FANG Z H,LI M J,et al. The influence of soil freezing on the heat transfer between heat exchanger or ground-source heat pumps and its ambient[J]. Journal of Shandong Institute of Arch. AND ENG,2001,6(1):42-46.(in Chinese)
    [15] 杨卫波,施明恒,刘光远,等. 基于显热容法的土壤源热泵地埋管换热器周围土壤冻结特性研究[J]. 暖通空调,2008,38(4):6-10. YANG W B,SHI M H,LIU G Y,et al. Study on freezing characteristics of soil around ground heat exchangers of ground-source heat pumps based on apparent heat capacity method[J]. HV & AC,2008,38(4):6-10.(in Chinese)
    [16] 魏亚志,张海东,王爱爱,等. 冻土层中水平埋管换热器换热特性的是指分析[J].建筑热能通风空调,2012,29(3):1-4. WEI Y Z, ZHANG D H, WANG A A, et al. Numerical simulation of heat transfer characteristic of horizontal ground heat exchanger in frozen soil layer[J]. Building Energy and Environment,2010,29(3):1-4. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张之强,金光,吴晅,田瑞,郭少朋.严寒地区地埋管换热器周围土壤冻结区域分布特征实验研究[J].土木与环境工程学报(中英文),2017,39(6):143-148. Zhang Zhiqiang, Jin Guang, Wu Xuan, Tian Rui, Guo Shaopeng. Experimental analysis of the distribution characteristics of the frozen soil area around ground heat exchanger in cold region[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2017,39(6):143-148.10.11835/j. issn.1674-4764.2017.06.020

复制
分享
文章指标
  • 点击次数:988
  • 下载次数: 1134
  • HTML阅读次数: 411
  • 引用次数: 0
历史
  • 收稿日期:2017-03-15
  • 在线发布日期: 2017-11-02
文章二维码