复合相变调湿材料的制备与热湿性能
CSTR:
作者:
中图分类号:

TU111.4

基金项目:

科技部重点专项(2016YFC0700500);国家自然科学基金(51578278)


Preparation and heat-moisture properties of phase change hygroscopic materials
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    制备一种兼具调热调湿功能的新型复合相变调湿材料(CMPCM),该材料由相变微胶囊(MPCM)与多孔调湿材料合成。作为被动式节能材料,能够有效平抑室内温湿度波动和降低建筑能耗。其中,相变微胶囊由癸酸和十八烷酸的混合物为芯材、二氧化硅为壁材通过溶胶凝胶法合成,多孔调湿材料为硅藻土。通过扫描电子显微镜(SEM)、差示扫描量热法(DSC)、热重分析法(TGA),正杯蒸发法和等温吸放湿法分析表征了复合相变调湿材料的组成结构、热性能、热稳定性以及传湿系数和湿缓冲值。DSC和TGA结果显示,复合相变调湿材料比普通相变材料有更小的过冷度和更好的热稳定性。传湿特性实验显示,该新材料比单纯的多孔调湿材料有更大的传湿系数和湿缓冲值。

    Abstract:

    A new composite phase change humidity material (CMPCM) was prepared, which has the functions of temperature regulation and humidity controlling. It was synthesized by composite microencapsulated phase change material (MPCM) and porous humidity control material. CMPCM can effectively stabilize the indoor temperature as well as humidity fluctuations, and reduce building energy consumption as a passive energy-saving material. The MPCM was synthesized by sol-gel method with a mixture of capric acid and octadecanoic acid (PCM) as core, and SiO2 as shell. The diatomite was selected as porous hygroscopic material. The performance of composition and structure, thermal properties, thermal stability, moisture transfer coefficient and moisture buffer value were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), positive cup evaporation method and isothermal sorption method respectively. DSC and TGA results showed that the super-cooling degree of CMPCM was lower than that of PCM, and the initial degradation temperature of CMPCM was higher than that of PCM. Moisture Transfer Characteristics Test showed that the moisture transfer coefficient and moisture buffer value of CMPCM were higher than that of classical materials.

    参考文献
    [1] QIN M H,BELARBI R,ALLARD F. Simulation of whole building coupled hygrothermal-air flow transfer in different climates[J]. Energy Conversion and Management,2011,52:1470-1478.
    [2] HASEGAWA T,IWASAKI S,SHILBUTANI Y,et al. Preparation of superior humidity-control materials from kenaf[J]. Journal of Porous Materials,2009,16(2):129-134.
    [3] MARCHAND R D,KOHN S C L,MORRIS J C. Delivering energy efficiency and carbon reduction schemes in England:lessons from Green Deal Pioneer Places[J]. Energy Policy,2015,84:96-106.
    [4] MORIARTY P,HONNERY D. What is the global potential for renewable energy[J]. Building and Environment,2012,16:244-252.
    [5] RESCH G, HELD A, FABER T,et al. Potentials and prospects for renewable energies at global scale[J]. Energy Policy,2008,36:4048-4056.
    [6] RAFIDIARISON H, REMOND R, MOUGEL E. Dataset for validating 1-D heat and mass transfer models within building walls with hygroscopic materials[J].Building and Environment,2015,89:356-368.
    [7] LELIEVRE D, COLINART T, GLOUANNEC P. Hygrothermal behavior of bio-based building materials including hysteresis effects:experimental and numerical analyses[J]. Energy and Buildings,2014,84:617-627.
    [8] AL-SAADI S N, ZHA Z. Modeling phase change materials embedded in building enclosure:A review[J]. Renewable and Sustainable Energy Reviews,2013,21:659-673.
    [9] LIU M, SAMAN W, BRUNO F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems[J].Renewable and Sustainable Energy Reviews,2012,16:2118-2132.
    [10] CHEN Z, CHI L. Humidity sensors:A review of materials and mechanisms[J]. Sensor Letters, 2005, 3(4):274-295.
    [11] BAETENS R, JELLE B P, GUSTAVSEN A. Phase change materials for building applications:a state-of-the-art review[J]. Energy and Buildings,2010,42:1361-1368.
    [12] KARKRI M, LACHHEB M, ALBOUCHI F, et al.Thermal properties of smart microencapsulated paraffin/plaster composites for the thermal regulation of buildings[J].Energy and Buildings,2015,88:183-192.
    [13] 方萍,吴懿,龚光彩. 多孔矿物调湿材料的微观结构与其吸湿性能[J]. 材料导报,2009,(Sup1):475-477. FANG P, WU Y, GONG G C. Microstructure and sorption properties of porous mineral materials[J]. Materials Review,2009,(Sup1):475-477.(in Chinese)
    [14] 吴懿. 调湿材料性能及其评价方法的研究[D]. 长沙:湖南大学,2016. WU Y. Research on the performance and evaluation methodology of hygroscopic materials[D]. Changsa:Hunan University,2016.(in Chinese)
    [15] 孟多,王立久.脂肪酸/无机纳米颗粒基定形相变材料的制备与热性能[J].建筑材料学报,2013,16(1):91. MENG D, WANG L J. Preparation and thermal properties of fatty acid/inorganic nano-particle form-stable phase change material[J]. Journal of Building Materials,2013,16(1):91.(in Chinese)
    [16] 尚建丽,王思,董莉. PAR/POL/SOD复合微胶囊的制备及热湿性能研究[J].功能材料,2013,44(8):1141. SHANG J L, WANG S, DONG L. Prepared of PAR/POL/SOD composite-wall microencapsulated and research of energy storage and humidity-control performance[J]. Journal of Functional Materials, 2013,44(8):1141.(in Chinese)
    [17] 张浩,黄新杰,宗志芳,等. 细粒径SiO2基棕榈醇-棕榈酸-月桂酸微胶囊相变调湿材料的制备与性能[J]. 材料研究学报,2016(6):418-426. ZHANG H, HUANG X J, ZONG Z F,et al. Preparation and properties of SiO2 based hexadecanolPalmitic acid-lauric acid microencapsulated phase change and humidity controlling materials with fine particle size[J]. Chinese Journal of Materials Research,2016(6):418-426. (in Chinese)
    [18] CHEN Z, CAO L, FANG G,et al. Synthesis and characterization of microencapsulated paraffin microcapsules as shape-stabilized thermal energy storage materials[J]. Nanoscale and Microscale Thermophysical Engineering,2013,17:112-123.
    [19] CHEN Z, SU D, QIN M H,et al. Preparation and characteristics of composite phase change material (CPCM) with SiO2 and diatomite as endothermal-hydroscopic material[J]. Energy and Buildings,2015,86:1-6.
    [20] FANG G Y, CHEN Z, LI H. Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials[J].Chemical Engineering Journal,2010,163:154-159.
    [21] 孔伟,杜玉成,卜仓友,等. 硅藻土基调湿材料的制备与性能研究[J]. 非金属矿,2011(1):57-59,62. KONG W, DU Y C, BU C Y,et al. Study on preparation and performance of diatomite-based humidity controlling materials[J]. Non-Metallic Mines, 2011(1):57-59,62.(in Chinese)
    [22] 黄子硕,于航,张美玲. 建筑调湿材料吸放湿速度变化规律[J]. 同济大学学报(自然科学版),2014(2):310-314. HUANG Z S, YU H, ZHANG M L.Humidity-control materials and their humidity absorption and desorption rate variation[J]. Journal of Tongji University (Natural Science Edition),2014(2):310-314.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴智敏,陈智,秦孟昊.复合相变调湿材料的制备与热湿性能[J].土木与环境工程学报(中英文),2018,40(4):13-19. Wu Zhimin, Chen Zhi, Qin Menghao. Preparation and heat-moisture properties of phase change hygroscopic materials[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2018,40(4):13-19.10.11835/j. issn.1674-4764.2018.04.003

复制
分享
文章指标
  • 点击次数:1159
  • 下载次数: 1014
  • HTML阅读次数: 385
  • 引用次数: 0
历史
  • 收稿日期:2017-12-19
  • 在线发布日期: 2018-07-05
文章二维码