基于应变能均化指标和云模型的结构损伤识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TU317

基金项目:

国家自然科学基金(51578094、51468058)


Structural damage identification based on modal strain energy mean index and cloud model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决测量噪声等引起的损伤识别不确定问题,提出了基于应变能均化指标和云模型相结合的识别方法。分析了结构的模态应变能以及两种损伤指标,并考虑到模态应变能耗散率指标和等效指标之间的互补性质,通过均化方法建立了模态应变能均化指标;给出了云模型的基本理论,分析了云模型的数字特征、云处理算法以及确定度计算方法;结合随机测量噪声等引起的不确定性问题,建立了基于应变能均化指标和云模型的损伤识别方法。数值计算结果表明,应变能均化指标的识别结果略优于应变能耗散率指标和应变能等效指标,当考虑随机测量噪声时,云模型与应变能均化指标相结合的方法可以较好地进行含噪数据的损伤识别。

    Abstract:

    In order to solve the uncertain damage problem caused by measurement noise, a damage identification method based on modal strain energy mean index(MSEMI) and cloud model is presented. First, structural modal strain energy and two kinds of damage indexes are analyzed. Considering that modal strain energy dissipation ratio index (MSEDRI) and modal strain energy equivalence index (MSEEI) are complementary, a MSEMI is proposed through the mean value method. Then, some basic theories of cloud model are introduced, and numerical characteristic estimation, cloud processing algorithm and certainty function are analyzed. Finally, the damage identification method based on MSEMI and cloud model is presented to solve the uncertain damage problem. Simulation results show that the identification results of the proposed MSEMI are better than those from both MSEDRI and MSEEI, and the damage identification method based on MSEMI and cloud model can solve the uncertain damage problem caused by measurement noise.

    参考文献
    相似文献
    引证文献
引用本文

郭惠勇,张鑫,王玉山.基于应变能均化指标和云模型的结构损伤识别[J].土木与环境工程学报(中英文),2018,40(4):121-127. Guo Huiyong, Zhang Xin, Wang Yushan. Structural damage identification based on modal strain energy mean index and cloud model[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2018,40(4):121-127.10.11835/j. issn.1674-4764.2018.04.017

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-09-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-07-05
  • 出版日期:
文章二维码