分数导数Kelvin粘弹性土中管桩的扭转振动
CSTR:
作者:
中图分类号:

TU473.16

基金项目:

国家自然科学基金(U1504505);河南省科技发展计划(142102210063);河南省高等学校重点科研项目(19B560008);信阳师范学院南湖学者奖励计划青年项目(201506)


Torsional vibration of a pipe pile in soil described by fractional derivative Kelvin viscoelastic model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [10]
  • | | |
  • 文章评论
    摘要:

    将管桩桩周土和桩芯土均看作粘弹性介质,同时运用分数导数Kelvin粘弹性本构模型描述桩周土和桩芯土的应力应变关系。仅考虑桩周土和桩芯土的环向位移,通过Fourier变换和分离变量法求解了桩周和桩芯分数导数Kelvin粘弹性土的扭转振动。考虑桩周土和桩芯土对管桩的作用力,建立了分数导数Kelvin粘弹性土中管桩的扭转振动方程,通过求解管桩的扭转振动得到了频率域内管桩桩顶的扭转复刚度。结果表明:桩周土本构模型参数α1Tb1对管桩的扭转振动有一定的影响,而桩芯土的本构模型参数α2Tb2对管桩扭转振动的影响与频率有关;桩芯土与桩周土剪切模量比μ小于1且μ较大时,扭转复刚度实部和虚部随频率变化曲线波动较大,而μ大于1时其对管桩扭转振动的影响很小;管桩壁厚、长径比和管桩与土体的剪切模量比Gp对管桩的扭转影响较大。

    Abstract:

    The soil around the pipe pile and pile core soil are regarded as viscoelastic medium, and the stress-strain relationship for them are described by fractional derivative Kelvin viscoelastic constitutive model. The torsional vibrations are solved by Fourier transformation and separation variable method by considering the circumferential displacement of the soil only. Considering the forces acting on the pipe piles, the torsional vibration in the fractional derivative Kelvin viscoelastic soil is established. The torsional complex stiffness at pipe pile head is obtained by solving the torsional vibration of the pipe pile. The results show that the model soil parameters α1 and Tb1 have certain influence on the torsional vibration while the influence of the pile core soil model parameters α2 and Tb2 is related to frequency. The curves of real and imaginary parts of torsional complex stiffness with frequency fluctuate more greatly when the shear modulus ratio μ is larger and μ<1, and the influence of shear modulus ratio μ on the torsional vibration of pipe pile is very small when μ>1. Wall thickness, length diameter ratio of pipe pile, as well as the shear modulus of pipe pile and soil have great influence on the torsional vibration of pipe pile.

    参考文献
    [1] NOVAK M, ABOULELLA F. Impedance functions of piles in layered media[J]. Journal of Engineering Mechanical Division, 1978, 104(3):643-661.
    [2] NOGAMI T,KONAGAI K. Time domain flexural response of dynamically loaded single pile[J]. Journal of Engineering Mechanics, 1988, 114(9):1512-1525.
    [3] 王国才,王哲,陈龙珠,等.均匀弹性地基中单桩的扭转振动特性研究[J].岩土力学,2008,29(11):3027-3036. WANG G C,WANG Z,CHEN L Z,et al. Research on torsional oscillation characteristics of single pile embedded in isotropic elastic foundation[J]. Rock and Solil Mechanics,2008,29(11):3027-3036. (in Chinese)
    [4] LÜ S H,WANG K H,WU W B.Longitudinal vibration of pile in layered soil based on Rayleigh-Love rod theory and fictitious soil-pile model[J]. Journal of Central South University,2015,22(5):1909-1918.
    [5] 刘林超,闫启方,王颂,等. 基于轴对称模型的管桩竖向振动研究[J].岩土力学,2016,37(1):119-125. LIU L C,YAN Q F,WANG S,et al. Vertical vibration of pipe pile based on axisymmetric model[J].Rock and Soil Mechanics, 2016,37(1):119-125.(in Chinese)
    [6] 栾鲁宝,丁选明, 刘汉龙,等. 考虑剪切变形的PCC桩水平振动响应解析解[J]. 岩石力学与工程学报,2016, 35(11):2345-2358. LUAN L B,DING X M,LIU H L,et al.Analytical solutions to lateral dynamic response of PCC piles considering shear deformation[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(11):2345-2358.(in Chinese)
    [7] 吴文兵,邓国栋,张家生,等.考虑横向惯性效应时桩侧土-管桩-土塞纵向耦合振动特性研究[J].岩土力学, 2017,38(4):993-1001. WU W B,DENG G D,ZHANG J S,et al. Vertical dynamic response of soil surrounding pipe-pile-soil plug by considering lateral inertial effect[J].Rock and Soil Mechanics, 2017,38(4):993-1001.(in Chinese)
    [8] NOVAK M. Dynamic stiffness and damping of piles[J]. Canadian Geotechnical Journal, 1974, 11(4):574-598.
    [9] YAO S, NOGAMI T. Lateral cyclic response of a pile in viscoelastic Winkler subgrade[J]. Journal of Engineering Mechanics, 1994, 120(4):758-775.
    [10] 周绪红,蒋建国,皱银生.粘弹性介质中考虑轴力作用时桩的动力分析[J].土木工程学报,2005,38(2):87-91. ZHOU X H, JIANG G, ZHOU Y S. Dynamic analysis of piles under axial loading and lateral dynamic force in viscoelastic medium[J]. China Civil Engineering Journal, 2005,38(2):87-91.(in Chinese)
    [11] 杨骁,刘慧,蔡雪琼.端承粘弹性桩纵向振动的轴对称解析解[J].固体力学学报,2012,33(4):423-430. YANG X, LIU H,CAI X Q.Axisymmetrical analytical solution for vertical vibration of end-bearing viscoelastic pile[J].Chinese Journal of Solid Mechanics, 2012,33(4):423-430.(in Chinese)
    [12] 郑长杰,刘汉龙,丁选明,等.饱和黏性土地基中现浇大直径管桩水平振动响应解析解[J].岩土工程学报,2014,36(8):1447-1454. ZHENG C J,LIU H L,DING X M, et al. Analytical solution of horizontal vibration of cast-in-place large-diameter pipe piles in saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2014,36(8):144-1454.(in Chinese)
    [13] 郑长杰,丁选明,栾鲁宝.黏弹性地基中管桩水平动力特性分析[J].岩土力学,2017,38(1):1-8. ZHANG Z Q,DING X M,LUAN L B. Study on the lateral dynamic response of a pipe pile in viscoelastic soil layer[J].Rock and Soil Mechanics, 2017, 38(1):1-8.(in Chinese)
    [14] 吴文兵,蒋国盛,邓国栋,等.黏弹性地基中基于虚土桩模型的桩顶纵向振动阻抗研究[J].振动与冲击,2015, 34(7):192-203. WU W B,JIANG G S,DENG G D,et al.Vertical dynamic impedance of pile embedded in viscoelastic soil based on fictitious soil pile model[J]. Journal of Vibration and Shock,2015,34(7):192-203.(in Chinese)
    [15] 刘林超,张卫.具有分数Kelvin模型的粘弹性岩体中水平圆形硐室的变形特性[J].岩土力学,2005,26(2):287-289. LIU L C,ZHANG W.The deformation proprieties of horizontal round adits in viscoelastic rocks by fractional Kelvin model[J].Rock and soil Mechanicals, 2005,26(2):287-289.(in Chinese)
    [16] 刘林超,闫启方.分数导数模型描述的粘弹性土层中桩基水平振动研究[J].工程力学,2011,28(12):139-145. LIU L C,YAN Q F. Lateral vibration of single pile in viscoelastic soil described by fractional derivative model[J].Engineering Mechanicals, 2011,28(12):139-145.(in Chinese)
    [17] 刘林超,杨骁.分数导数模型描述的饱和土桩纵向振动分析[J].岩土力学,2011,32(2):526-532. LIU L C,YANG X. Analysis of vertical vibrations of a pile in saturated soil described by fractional derivative model[J].Rock and Soil Mechanics,2011,32(2):526-532.(in Chinese)
    [18] 闻敏杰,徐金明,李强.饱和黏弹性土中端承桩扭转振动的对比分析[J].浙江大学学报(工学版),2013,47(12):2146-2152. WEN M J,XU J M,LI Q. Comparative analysis for torsional vibration of an end-bearing pile in saturated viscoelastic soil[J].Journal of Zhejiang University, 2013, 47(12):2146-2152.(in Chinese)
    [19] TIMOSHENKO S P. Theory of elasticity[M].New York:McGraw-Hill Book, 1934.
    [20] BAGLEY R L, TORVIK P J. A theoretical basis for the application of fractional calculus to viscoelasticity[J]. Journal of Rheology,1983,27(3):201-210.
    [21] MILLER K S, ROSS B. An introduction to the fractional calculus and fractional differential equations[M].New York:Wiley,1993.
    [22] 孙海忠,张卫.一种分析软土黏弹性的分数导数开尔文模型[J].岩土力学,2007,28(9):1983-1986. SUN H Z, ZHANG W.Analysis of soft soil with viscoelastic fractional derivative Kelvin model[J]. Rock and Soil Mechanics, 2007,28(9):1983-1986.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘林超,闫启方,牛洁楠.分数导数Kelvin粘弹性土中管桩的扭转振动[J].土木与环境工程学报(中英文),2018,40(6):46-52. Liu Linchao, Yan Qifang, Niu Jienan. Torsional vibration of a pipe pile in soil described by fractional derivative Kelvin viscoelastic model[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2018,40(6):46-52.10.11835/j. issn.1674-4764.2018.06.007

复制
分享
文章指标
  • 点击次数:1042
  • 下载次数: 833
  • HTML阅读次数: 387
  • 引用次数: 0
历史
  • 收稿日期:2017-10-10
  • 在线发布日期: 2018-11-13
文章二维码