粒子群优化协同克里金法在确定山地斜坡土层厚度中的应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TU191.1

基金项目:

国家“十二五”科技计划支撑课题(2012BAJ22B06);重庆市国土资源和房屋管理局科技计划(2015003)


Application of cooperative Kriging method based on particle swarm optimization in estimation slope soil thickness
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    克里金法是广泛应用的空间插值方法,但仅考虑单一因素的普通克里金法在确定山地斜坡土层厚度中存在较大误差。针对普通克里金法中的不足之处,提出了一种确定土层厚度的基于粒子群优化的协同克里金法。该方法首先用粒子群优化算法拟合半变异函数,然后将该函数用于以高程值作为辅助变量的协同克里金法中,并根据均方根误差来评价土层厚度的不确定性。将该方法应用于重庆万盛某边坡土层厚度的确定,通过交叉验证,结果表明:与普通克里金插值法相比较,考虑高程的协同克里金法插值的均方根误差降低了39.32%;基于粒子群优化的普通克里金法和协同克里金法的均方根误差分别降低了28.79%和48.45%。基于粒子群优化的协同克里金插值法对提高土层厚度的插值精度有较大作用。

    Abstract:

    The Kriging method is widely used for the spatial interpolation. However, the conventional Kriging method which only considers a singer factor generally leads to a considerable inaccuracy. In this paper, a cooperative kriging method based on particle swarm optimization is proposed to estimate the soil thickness distribution. Estimation is divided into two steps. Firstly, the particle swarm optimization is used to fit the semi-variance function. Secondly, the cooperative Kriging method which uses the altitude as an auxiliary variable is employed for estimation. In addition, a root mean square error is obtained to evaluate the estimation uncertainty of soil thickness. The proposed method is applied to estimate the soil thickness of a slope in Wansheng, Chongqing. It shows that compared with the conventional method, the cooperative Kriging approach improves the estimation accuracy by reducing the standard deviation by 39.32%, indicating that the proposed method is advantageous in improving the accuracy of spatial interpolation.

    参考文献
    相似文献
    引证文献
引用本文

王桂林,向林川,孙帆.粒子群优化协同克里金法在确定山地斜坡土层厚度中的应用[J].土木与环境工程学报(中英文),2018,40(6):60-66.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-10-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-11-13
  • 出版日期: