基于改进PSO-BP神经网络的冰蓄冷空调冷负荷动态预测模型
CSTR:
作者:
中图分类号:

TU831.2

基金项目:

国家重点研发计划(2017YFC0704100);陕西省教育厅产业化培育项目(17JF015)


Dynamic load forecasting model of ice storage air conditioning based on improved PSO-BP neural network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    当前多数冰蓄冷空调冷负荷动态预测方法中,由于模型输入变量与输出结果相关性差、信息冗余度高等原因,导致多数预测模型在预测精度和收敛速度方面都未达到理想的预测效果,因此,提出一种改进的PSO-BP神经网络算法预测大型公共建筑的冷负荷。对于输入变量与输出结果采用灰色关联度分析,消除样本输入变量对数的耦合性,确定影响冰蓄冷空调系统冷负荷的关键性因素,将其作为输入变量,预测冰蓄冷空调系统动态冷负荷。结果表明:T时刻室外空气温度、T-1 h时刻室外空气温度、T时刻室外空气湿度、T时刻太阳辐射强度、T-1 h时刻太阳辐射强度、T-1 h时刻空调冷负荷是影响T时刻冰蓄冷空调系统冷负荷的关键因素,并以此作为预测模型的输入变量。相对于传统PSO-BP神经网络全输入变量预测算法,该模型预测结果精确度更高、收敛速度更快。

    Abstract:

    At present, most of the dynamic prediction methods of ice storage air conditioning cooling load showed poor precision and slow convergence speed, due to bad correlation between model input variables and output results, high information redundancy. This paper proposes an improved PSO-BP neural network optimization algorithm to predict the cooling load of large public buildings. For the input variables and the output results, the degree of grey correlation analysis is used to eliminate the chance of the logarithm of the samples input variables, and the key factors affecting the cold load of the ice storage air conditioning system are determined as input variables to predict the dynamic cooling load of the ice storage air conditioning system. The results show that the key factors of the cooling load of ice storage air conditioning system include the outdoor air temperature at T h, the outdoor air temperature at T-1 h, the outdoor air humidity at T h, the solar radiation intensity at T h, the solar radiation intensity at T-1 h, and the air-conditioning cooling load at T-1 h. Therefore, these key factors act as the input variables of the prediction model which show higher accuracy and faster convergence speed than the traditional PSO-BP network model of full-variable prediction method.

    参考文献
    [1] 清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2017[M].北京:中国建筑工业出版社,2017. Building Energy Conservation Research Center of Tsinghua University. Annual report on building energy efficiency in China 2017[M]. Beijing:China Architecture & Building Press, 2017. (in Chinese)
    [2] 薛志峰,江亿.商业建筑的空调系统能耗指标分析[J].暖通空调,2005,35(1):37-42 XUE Z F, JIANG Y. Analysis of energy consumption of air conditioning system in commercial buildings[J]. Heating Ventilating & Air Conditioning, 2005, 35(1):37-42. (in Chinese)
    [3] TIBERIU C, VLAD I, BOGDAN C. Multiple regression model for fast prediction of the heating energy demand[J]. Energy & Buildings, 2013, 57:302-312.
    [4] ZHOU Q, WANG S, XU X. A grey-box model of next-day building thermal load prediction for energy-efficient control[J]. International Journal of Energy Research, 2010, 32(15):1418-1431.
    [5] SALEH N A, ZHAI Z Q. A new validated trnsys module for simulating latent heat storage walls[J]. Energy & Buildings, 2015, 109:274-290.
    [6] SAFA A A, FUNG A S, KUMAR R. Heating and cooling performance characterisation of ground source heat pump system by testing and trnsys simulation[J]. Renewable Energy, 2015, 83:565-575.
    [7] BEN-NAKHI A E, MAHMOUD M A. Cooling load prediction for buildings using general regression neural networks[J]. Energy Conversion & Management, 2004, 45(13):2127-2141.
    [8] ĈEKON M. Accuracy analysis of longwave sky radiation models in the MZELWE module of the ESP-r program[J]. Energy & Buildings, 2015, 103:147-158.
    [9] YU S, CUI Y M, XU X L. Impact of civil envelope on energy consumption based on energy plus[J]. Procedia Engineering, 2015, 121:1528-1534.
    [10] FUMO N, MAGO P,LUCK R. Methodology to estimate building energy consumption using energy plus benchmark models[J]. Energy & Buildings, 2010, 42(12):2331-2337.
    [11] 喻伟,李百战,杨明宇.基于人工神经网络的建筑多目标预测模型[J].中南大学学报(自然科学版),2012,43(12):4949-4955. YU W, LI B Z, YANG M Y. Building multi-objective forecasting model based on artificial neural network[J]. Journal of Central South University (Science and Technology), 2012, 43(12):4949-4955. (in Chinese)
    [12] 李祥立,王仁瑾,端木琳,等.基于BP神经网络的地板辐射供暖系统逐时负荷预测[J].暖通空调,2011,41(12):95-98. LI X L, WANG R J, DUAN M L, et al. Hourly heating load prediction of radiant floor heating systems based on BP neural network[J]. Heating Ventilating & Air Conditioning, 2011,41(12):95-98. (in Chinese)
    [13] 徐小艳,管晓宏,李黎.建筑空调系统最优停机时间预测与控制[J].西安交通大学学报,2013,47(10):31-36. XU X Y, GUAN X H, LI L. Predicting the optimal shut-down time of heat ventilation air-conditioning and cooling system in building[J]. Journal of Xi'an Jiaotong University, 2013, 47(10):31-36. (in Chinese)
    [14] KUMAR R, AGGARWAL R K, SHARMA J D. Energy analysis of a building using artificial neural network:A review[J]. Energy & Buildings, 2013, 65(4):352-358.
    [15] ESCRIVA-ESCRIVA G, ÁLVAREZ-BEL C, ROLDAN-BLAY C. New artificial neural network prediction method for electrical consumption forecasting based on building Ed-uses[J]. Energy & Buildings,2011,43(11):3112-3119.
    [16] DAUT M A M, HASSAN M Y, ABDULLAH H. Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods:A review[J]. Renewable & Sustainable Energy Reviews, 2017, 70:1108-1118.
    [17] 张少迪.基于PSO-BP神经网络的短期负荷预测算法[J].现代电子技术,2013(12):155-158. ZHANG S D. Algorithm of short-time load forecast based on PSO-BP neural network[J]. Modern Electronics Technique, 2013(12):155-158. (in Chinese)
    [18] 刘思峰,谢乃明.灰色系统理论及其应用[M].北京:科学出版社,2013. LIU S F, XIE N M. Gray system theory and its application[M]. Beijing:Science Press, 2013. (in Chinese)
    [19] 李祚泳,汪嘉杨,郭淳.PSO算法优化BP网络的新方法及仿真实验[J].电子学报,2008,36(11):2224-2228. LI Z Y, WANG J Y, GUO C. A new method of BP network optimized based on particle swarm optimization and simulation test[J]. Acta Electronica Sinica, 2008, 36(11):2224-2228. (in Chinese)
    [20] 师彪,李郁侠,于新花.改进粒子群-BP神经网络模型的短期电力负荷预测[J].计算机应用,2009,29(4):1036-1039. SHI B, LI Y X, YU X H. Short-term load forecast based on modified particle swarm optimizer and back propagation neural network model[J]. Journal of Computer Applications, 2009, 29(4):1036-1039. (in Chinese)
    [21] 蔡金锭,付中云.粒子群神经网络混合算法在负荷预测中的应用[J].高电压技术,2007,33(5):90-93. CAI J D, FU Z Y. Application of particle group and neural network hybrid algorithm in load forecast[J]. High Voltage Engineering, 2007, 33(5):90-93. (in Chinese)
    [22] PAUDEL S, ELMITRI M,COUTURIER S,et al.A relevant data selection method for energy consumption prediction of low energy building based on support vector machine[J]. Energy and Buildings,2017,138:240-256.
    [23] CHEN Y, PETER B L, CHE G. Short-term load forecasting:Similar day-based wavelet neural networks[J]. World Congress on Intelligent Control & Automation, 2008, 25(1):3353-3358.
    [24] SUN C Y, SONG J Y, LI L F. Implementation of hybrid short-term load forecasting system with analysis of temperature sensitivities[J]. Soft Computing, 2008, 12(7):633-638.
    [25] TOMONBU S, HIROKAZU S, YOSHINORI T. Next-day load curve forecasting using neural network based on similarity[J].Electric Machines & Power Systems, 2001, 29(10):939-948.
    [26] PAUDEL S, ELMITRI M, COUTURIER S. A relevant data selection method for energy consumption prediction of low energy building based on support vector machine[J]. Energy & Buildings, 2017, 138:240-256.
    [27] YAU Y H,HASBI S.A comprehensive case study of climate change impacts on the cooling load in an air-conditioned office building in malaysia[J]. Energy Procedia, 2017, 143:295-300.
    [28] 王蓓蓓,朱峰,嵇文路.中央空调降负荷潜力建模及影响因素分析[J].电力系统自动化,2016,40(19):44-52. WANG B B, ZHU F, JI W L. Load cutting potential modeling of central air conditioning and analysis on influencing factors[J]. Automation of Electric Power Systems, 2016, 40(19):44-52. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨熊,于军琪,郭晨露,华宇剑,赵安军.基于改进PSO-BP神经网络的冰蓄冷空调冷负荷动态预测模型[J].土木与环境工程学报(中英文),2019,41(1):168-174. Yang Xiong, Yu Junqi, Guo Chenlu, Hua Yujian, Zhao Anjun. Dynamic load forecasting model of ice storage air conditioning based on improved PSO-BP neural network[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2019,41(1):168-174.10.11835/j. issn.2096-6717.2019.021

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-03-04
  • 在线发布日期: 2019-04-04
文章二维码