基于无应力状态量的平面梁节段预制构形计算方法
CSTR:
作者:
中图分类号:

U445.47

基金项目:

中国工程院重点咨询研究项目(2016-XZ-13);中央高校基本科研业务费(A0920502051707-2-027)


Calculation of precast configuration based on unstressed state amount for plane beam elements
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探讨平面梁单元无应力状态量与单元预制构形的关系,通过分析平面梁单元在节点位移下的几何构形变化,建立了平面梁单元预制构形参数与单元无应力状态量之间的数学关系,并以悬臂梁为例,以两种线形为输入,对关系式进行验证。结果表明,单元无应力构形与单元无应力状态量之间相互对应,不同的单元无应力状态量对应不同的单元预制构形;两种线形对应的单元预制构形不相同,但二者对主梁节段拼装时节点标高控制无本质影响。对实际工程而言,只要确保节点标高满足目标线形标高控制要求,梁段的预制构形可不同。

    Abstract:

    In order to investigate the relationship between the unstressed state amount and the prefabricated configuration of the plane beam element, a mathematical relationship between parameters of the prefabricated configuration and the unstressed state amount of the plane beam element was established by analyzing the geometrical configuration of the plane beam element considering the displacement of the joint. Taking a cantilever beam as an example, two types of alignment were used as inputs to verify the proposed mathematical relationship. The results show that the unstressed configuration is uniquely associated with the unstressed state amount of the element. The unstressed state amounts of different elements correspond to different prefabricated configurations. Although the prefabricated configurations of the two alignments are different, they have minimal influence on the joint elevation control when assembling the main beam segments. In engineering practice, the prefabricated configuration of the beam segment can be different as long as the joint elevation satisfies the elevation requirement of the target alignment.

    参考文献
    [1] MULLER J. Ten years of experience in precast segmental construction[J]. PCI Journal, 1975, 20(1):28-61.
    [2] ROMBACH G A, ABENDEH R. Bow-shaped segments in precast segmental bridges[J]. Engineering Structures, 2008, 30(6):1711-1719.
    [3] SHIM C S, KIM D W, KONG D. Structural performance of precast segmental composite pier cap[J]. IABSE Congress Report, 2012, 18(2):1988-1993.
    [4] KATO H, MATSUOKA Y, YAMAGUCHI S. Production of the PC girder by long line match cast method:Tohoku Jukan Line[J]. Journal of Prestressed Concrete, 2013, 55(1):17-24. (in Japanese)
    [5] MEHLE J S. Jigsaw bridge puzzle:Innovative fabrication makes onsite assembly a breeze[J]. Roads & Bridges, 2002, 40(3):34-37.
    [6] 周凌宇,郑恒.基于坐标变换的短线预制梁段匹配误差调整[J].桥梁建设,2016,46(5):71-76. ZHOU L Y, ZHENG H. Matching error adjustment of girder segments precast by short line match method based on coordinate transformation[J]. Bridge Construction, 2016, 46(5):71-76. (in Chinese)
    [7] 刘斌.香港东区立交工程短线法节段梁施工技术[J].世界桥梁,2015,43(2):25-28. LIU B. Short-line segmental construction of eastern interchange project in Hong Kong[J]. World Bridges, 2015,43(2):25-28. (in Chinese)
    [8] HUANG Y, ZHENG H H, WANG M, et al. Geometry control technology of transition curve section in cross-sea bridge erected by precasting segment girder[J]. Applied Mechanics and Materials, 2012, 256-259:1548-1553.
    [9] HUANG Y, WU X F. Prefabrication and erection technology of wide box girders in cross-sea bridge[J]. Advanced Materials Research, 2015, 1065-1069:882-888.
    [10] 余昆, 李景成. 基于无应力状态法的悬臂拼装斜拉桥的线形控制[J]. 桥梁建设, 2012,42(3):44-49. YU K, LI J C. Geometric shape control of cantilever assembled cable-stayed bridge based on unstressed state method[J]. Bridge Construction, 2012,42(3):44-49. (in Chinese)
    [11] 吴运宏, 岳青, 江湧, 等. 基于无应力状态法的钢箱梁斜拉桥成桥目标线形的实现[J]. 桥梁建设, 2012, 42(5):63-68. WU Y H, YUE Q, JIANG Y, et al. Realization of target geometric shapes of completed bridge of steel box girder cable-stayed bridge based on unstressed state method[J]. Bridge Construction, 2012, 42(5):63-68. (in Chinese)
    [12] 颜东煌, 陈常松, 董道福, 等. 大跨度钢主梁斜拉桥的自适应无应力构形控制[J]. 中国公路学报, 2012, 25(1):55-58, 82. YAN D H, CHEN C S, DONG D F, et al. Control of self-adaptive zero-stress configuration for long-span cable-stayed bridge with steel main girders[J]. China Journal of Highway and Transport, 2012, 25(1):55-58, 82. (in Chinese)
    [13] 秦顺全. 分阶段施工桥梁的无应力状态控制法[J]. 桥梁建设, 2008, 38(1):8-14. QIN S Q. Unstressed state control method for bridges constructed in stages[J]. Bridge Construction, 2008, 38(1):8-14. (in Chinese)
    [14] 苑仁安, 秦顺全, 王帆, 等. 基于平面梁单元的几何非线性分阶段成形平衡方程[J]. 桥梁建设, 2014, 44(4):45-49. YUAN R A, QIN S Q, WANG F, et al. Equilibrium equation for geometric nonlinearity of structure formed in stages based on plane beam elements[J]. Bridge Construction, 2014, 44(4):45-49. (in Chinese)
    [15] 许磊平, 秦顺全, 马润平, 等. 基于平面壳单元的分阶段成形结构平衡方程[J]. 西南交通大学学报, 2013, 48(5):857-862. XU L P, QIN S Q, MA R P, et al. Equilibrium equation derivation of structures formed by stages based on plane shell element[J]. Journal of Southwest Jiaotong University, 2013, 48(5):857-862. (in Chinese)
    [16] 但启联, 秦顺全, 魏凯, 等. 基于平面梁单元的分阶段成形结构线形控制方程[J]. 桥梁建设, 2017, 47(4):42-47. DAN Q L, QIN S Q, WEI K, et al. Equation for geometric shape control of structure formed in stages based on plane beam elements[J]. Bridge Construction, 2017, 47(4):42-47. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

但启联,秦顺全,魏凯,邓鹏,苑仁安.基于无应力状态量的平面梁节段预制构形计算方法[J].土木与环境工程学报(中英文),2019,41(4):86-91. Dan Qilian, Qin Shunquan, Wei Kai, Deng Peng, Yuan Ren'an. Calculation of precast configuration based on unstressed state amount for plane beam elements[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2019,41(4):86-91.10.11835/j. issn.2096-6717.2019.075

复制
分享
文章指标
  • 点击次数:743
  • 下载次数: 917
  • HTML阅读次数: 564
  • 引用次数: 0
历史
  • 收稿日期:2018-10-12
  • 在线发布日期: 2019-07-27
文章二维码