混凝-超滤工艺去除水中复合污染物试验研究
CSTR:
作者:
中图分类号:

X703.1

基金项目:

中央高校基本科研业务(2018CDYJSY0055、106112014CDJZR210004);国家自然科学基金(21477010);大型仪器基金(201406150031)


Removal of compound pollutants in water by microflocculation-ultrafiltration process
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    研究分析腐殖酸对水溶液中纳米TiO2稳定性的影响,探究混凝剂投加量、pH值、钙离子对混凝-超滤工艺去除水中腐殖酸-纳米TiO2复合污染物的影响。结果表明,纳米TiO2与腐殖酸在水溶液中发生静电吸附以及配位反应,使纳米TiO2有效粒径减小,静电斥力增强,胶体分散更均匀,体系稳定性增加,易于迁移,从而给饮用水安全带来威胁。在单因素影响实验中,实验结果显示,混凝剂浓度为0.46 mmol/L、pH值在7~8之间(即弱碱性)时,能有效去除复合污染物,此时,膜通量较高,膜污染较轻,而水中钙离子的存在会加重膜污染。

    Abstract:

    The effect of humic acid (HA) on the stability of nano-TiO2 was analyzed, and the effects of coagulant dosage, pH and calcium(Ⅱ) concentration on the removal efficiency of HA-TiO2 composite pollutants by the coagulation-ultrafiltration process were investigated. The results showed that the electrostatic adsorption and coordination reaction occurred between nano-TiO2 and HA in the aqueous solution, which caused the decrease of effective particle size of nano-TiO2, the enhancement of electrostatic repulsion, more uniform dispersion of colloid, the increase of system stability and easy migration. These posed a threat to the safety of drinking water. The optimum parameter for HA-TiO2 composite pollutants removal was that the coagulant concentration is 0.46 mmol/L, and the initial pH value is between 7 and 8,the higher membrane flux and lighter membrane fouling was achieved under this condition. The calcium ion in the solution will lead to the increase of membrane fouling.

    参考文献
    [1] CHEN Q Q, YIN D Q, ZHU S J, et al. Adsorption of cadmium(Ⅱ) on humic acid coated titanium dioxide[J]. Journal of Colloid and Interface Science, 2012, 367(1):241-248.
    [2] WANG Y, XUE N, CHU Y B, et al. CuO nanoparticle-humic acid (CuONP-HA) composite contaminant removal by coagulation/ultrafiltration process:The application of sodium alginate as coagulant aid[J]. Desalination, 2015, 367:265-271.
    [3] GHAEMI N, MADAENI S S, DARAEI P, et al. Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water:Application of new functionalized Fe3O4 nanoparticles[J]. Chemical Engineering Journal, 2015, 263:101-112.
    [4] 鲁晶, 刘冬梅, 刘世光, 等. 纳米TiO2颗粒与腐殖酸和SDBS的相互作用机制[J]. 哈尔滨工业大学学报, 2015, 47(8):21-24. LU J, LIU D M, LIU S G, et al. Interaction mechanisms of the TiO2 nanoparticles with humic acid and SDBS[J]. Journal of Harbin Institute of Technology, 2015, 47(8):21-24.(in Chinese)
    [5] LI L, SILLANPÄÄ M, RISTO M. Influences of water properties on the aggregation and deposition of engineered titanium dioxide nanoparticles in natural waters[J]. Environmental Pollution, 2016, 219:132-138.
    [6] 范小江, 张锡辉, 苏子杰, 等. 超滤技术在我国饮用水厂中的应用进展[J]. 中国给水排水, 2013, 29(22):64-70. FAN X J, ZHANG X H, SU Z J, et al. Application of ultrafiltration technology in drinking water treatment plants in China[J]. China Water & Wastewater, 2013, 29(22):64-70.(in Chinese)
    [7] FENG R Q, YUE Q Y, GAO B Y, et al. Effect of pH on floc properties and membrane fouling in coagulation-ultrafiltration hybrid process with different Al-based coagulants[J]. Desalination and Water Treatment, 2016, 57(54):26041-26049.
    [8] DONG H Y, GAO B Y, YUE Q Y, et al. Floc properties and membrane fouling of different monomer and polymer Fe coagulants in coagulation-ultrafiltration process:The role of Fe (Ⅲ) species[J]. Chemical Engineering Journal, 2014, 258:442-449.
    [9] 董秉直, 张庆元, 冯晶, 等. 粉末活性炭预处理对超滤膜通量的影响[J]. 环境科学学报, 2008, 28(10):1981-1987. DONG B Z, ZHANG Q Y, FENG J, et al. Influence of powered activated carbon (PAC) pretreatment on ultrafiltration membrane flux[J]. Acta Scientiae Circumstantiae, 2008, 28(10):1981-1987.(in Chinese)
    [10] 冯萃敏, 张欣蕊, 孙丽华, 等. PAC-UF工艺的膜污染特性及膜污染物质研究[J]. 给水排水, 2015, 51(3):125-131. FENG C M, ZHANG X R, SUN L H, et al. Study on the characteristics of membrane fouling and the composition of matters for membrane fouling in PAC-UF process[J]. Water & Wastewater Engineering, 2015, 51(3):125-131.(in Chinese)
    [11] 陈卫, 袁哲, 徐林, 等. 高锰酸钾预氧化对有机物构型与超滤膜污染的影响[J]. 中南大学学报(自然科学版), 2012, 43(1):389-394. CHEN W, YUAN Z, XU L, et al. Effect of KMnO4 pre-oxidation on organic configuration and ultrafiltration membrane fouling[J]. Journal of Central South University, 2012, 43(1):389-394.(in Chinese)
    [12] 俞海祥, 伊学农, 杨光炜, 等. 臭氧超滤去除微污染水中农药残留物[J]. 水处理技术, 2015, 41(12):110-113. YU H X, YI X N, YANG G W, et al. Ozone cooperated with ultrafiltration for the removal of pesticide residues from slight-polluted water[J]. Technology of Water Treatment, 2015, 41(12):110-113.(in Chinese)
    [13] MENG F G, CHAE S R, DREWS A, et al. Recent advances in membrane bioreactors (MBRs):Membrane fouling and membrane material[J]. Water Research, 2009, 43(6):1489-1512.
    [14] ZHANG Y, CHEN Y S, WESTERHOFF P, et al. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles[J]. Water Research, 2009, 43(17):4249-4257.
    [15] 乔永生, 沈腊珍, 李晓琛, 等. Fe3O4/SiO2复合粒子的制备及对Cd2+ 的吸附性能研究[J]. 中北大学学报(自然科学版), 2015, 36(3):343-347,353. QIAO Y S, SHEN L Z, LI X C, et al. Preparation of Fe3O4/SiO2 composite particles for cadmium(Ⅱ) adsorption from aqueous solution[J]. Journal of North University of China (Natural Science Edition), 2015, 36(3):343-347,353.(in Chinese)
    [16] 罗敏. 紫外分光光度法测定聚酯纤维中二氧化钛含量[J]. 应用化工, 2006, 35(2):144-146. LUO M. Determination of titanium dioxide content in polyester fiber by UV-spectrophotometry[J]. Applied Chemical Industry, 2006, 35(2):144-146.(in Chinese)
    [17] ERHAYEM M, SOHN M. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles[J]. Science of the Total Environment, 2014, 470/471:92-98.
    [18] 刘媛媛, 潘纲. 吸附模式对有机物光催化降解的影响1.H-酸在TiO2表面的吸附模式[J]. 环境化学, 2006, 25(1):1-5. LIU Y Y, PAN G. Effect of adsorption modes on the photo catalytic degradation of organic matters 1. adsorption modes of H-acid on TiO2[J]. Environmental Chemistry, 2006, 25(1):1-5.(in Chinese)
    [19] ZHU M, WANG H T, KELLER A A, et al. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths[J]. Science of the Total Environment, 2014, 487:375-380.
    [20] LUO M X, HUANG Y X, ZHU M, et al. Properties of different natural organic matter influence the adsorption and aggregation behavior of TiO2 nanoparticles[J]. Journal of Saudi Chemical Society, 2018, 22(2):146-154.
    [21] ERHAYEM M, SOHN M. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter[J]. Science of the Total Environment, 2014, 468/469:249-257.
    [22] 张冬, 董岳, 周东菊, 等. 基于XDLVO理论的超滤膜污染机理研究[J]. 中国给水排水, 2016, 32(21):66-70. ZHANG D, DONG Y, ZHOU D J, et al. Study on fouling behavior of ultrafiltration membrane based on XDLVO theory[J]. China Water & Wastewater, 2016, 32(21):66-70.(in Chinese)
    [23] WANG J W, MO Y B, MAHENDRA S, et al. Effects of water chemistry on structure and performance of polyamide composite membranes[J]. Journal of Membrane Science, 2014, 452:415-425.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵纯,金凡,安叶,孙志华,郑怀礼.混凝-超滤工艺去除水中复合污染物试验研究[J].土木与环境工程学报(中英文),2019,41(4):143-149. Zhao Chun, Jin Fan, An Ye, Sun Zhihua, Zheng Huaili. Removal of compound pollutants in water by microflocculation-ultrafiltration process[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2019,41(4):143-149.10.11835/j. issn.2096-6717.2019.082

复制
分享
文章指标
  • 点击次数:855
  • 下载次数: 938
  • HTML阅读次数: 433
  • 引用次数: 0
历史
  • 收稿日期:2018-09-30
  • 在线发布日期: 2019-07-27
文章二维码