严寒地区民用建筑热工设计二级分区指标适用性分析
CSTR:
作者:
中图分类号:

TU119.6

基金项目:

国家自然科学基金(51838011、51808429);陕西省重点研发计划(2017ZDXM-SF-076)


Applicability analysis of the second level index for dividing climate region for building thermal design in severe cold climate zone
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    严寒地区分布范围广、气候条件复杂,现行标准规范以基准温度18℃的采暖度日数(HDD18)作为分区指标,将严寒地区划分为3个二级气候区。为分析该指标的适用性,通过EnergyPlus软件模拟并地较典型建筑在严寒地区61个城市的年累计热负荷差异,对比部分城市之间的气候特征,分析城市的HDD18与建筑年累计热负荷的关系,探讨HDD18分区指标的适用地区。结果表明:在HDD18相近的条件下,西部高海拔地区城市的建筑年累计热负荷显著低于东部城市;HDD18与建筑年累计热负荷仅在太阳辐射量及夏季温度差异较小的地区呈线性关系;HDD18作为分区指标,适用于太阳辐射及夏季温度差异小的地区,严寒地区宜结合太阳辐射等因素划分二级分区。

    Abstract:

    The severe cold climate zone in China has a wide distribution range with complex climate conditions, which was divided into 3 subzones according to heating degree days based on 18℃ (HDD18). In order to investigate the rationality of the current second level index for dividing climate region for building thermal design, the annual cumulative heating loads of typical buildings in 61 cities in severe cold climate zone were simulated by EnergyPlus software. The climatic characteristics of several cities were compared and the relationship between HDD18 and annual cumulative building heating load were explored. The results show that the annual cumulative building heating load in low-altitude region is much higher than that in high-altitude region with similar HDD18. The annual cumulative building heating load is linearly correlated with HDD18 only in the regions with small differences in solar radiation intensity and summer temperature. Therefore, HDD18 is suitable for zoning in areas with small differences in solar radiation and summer temperature, which should be combined with the solar radiation to divide climate region in severe cold climate zone.

    参考文献
    [1] 杨柳. 建筑气候分析与设计策略研究[D]. 西安:西安建筑科技大学, 2003. YANG L. Climatic analysis and architectural design strategies for bio-climatic design[D]. Xi'an:Xi'an University of Architecture and Technology, 2003.(in Chinese)
    [2] 《民用建筑热工设计规范》编制组. 民用建筑热工设计规范技术导则[M]. 北京:中国建筑工业出版社, 2017:65-73. Establishment of Code for Thermal Design of Civil Buildings. Technical guidelines of code for thermal design of civil buildings[M]. Beijing:China Architecture and Building Press, 2017:65-73.(in Chinese)
    [3] LIU Y, YANG L, ZHENG W X, et al. A novel building energy efficiency evaluation index:Establishment of calculation model and application[J]. Energy Conversion and Management, 2018, 166:522-533.
    [4] 民用建筑热工设计规范:GB 50176-2016[S]. 北京:中国建筑工业出版社, 2016. Code for thermal design of civil building:GB 50176-2016[S]. Beijing:China Architecture and Building Press, 2016. (in Chinese)
    [5] BHATNAGAR M, MATHUR J, GARG V. Determining base temperature for heating and cooling degree-days for India[J]. Journal of Building Engineering, 2018, 18:270-280.
    [6] 刘大龙, 刘加平, 侯立强, 等. 气象要素对建筑能耗的效用差异性[J]. 太阳能学报, 2017, 38(7):1794-1800. LIU D L, LIU J P, HOU L Q, et al. Differentiation analysis of meteorological parameters affecting building energy consumption[J]. Acta Energiae Solaris Sinica, 2017, 38(7):1794-1800.(in Chinese)
    [7] QUAYLE R G, DIAZ H F. Heating degree day data applied to residential heating energy consumption[J]. Journal of Applied Meteorology, 1980, 19(3):241-246.
    [8] WALSH A, CÓSTOLA D, LABAKI L C. Review of methods for climatic zoning for building energy efficiency programs[J]. Building and Environment, 2017, 112:337-350.
    [9] 刘大龙, 刘加平, 张习龙, 等. 青藏高原气候条件下的建筑能耗分析[J]. 太阳能学报, 2016, 37(8):2167-2172. LIU D L, LIU J P, ZHANG X L, et al. Building energy consumption analysis in climatic condition of tibetan plateau[J]. Acta Energiae Solaris Sinica, 2016, 37(8):2167-2172.(in Chinese)
    [10] 刘加平, 杨柳, 刘艳峰, 等. 西藏高原低能耗建筑设计关键技术研究与应用[J]. 中国工程科学, 2011, 13(10):40-46. LIU J P, YANG L, LIU Y F, et al. Key technological research and application of low energy consumption building design in Tibet[J]. Strategic Study of CAE, 2011, 13(10):40-46.(in Chinese)
    [11] 付祥钊, 张慧玲, 黄光德, 等. 关于中国建筑节能气候分区的探讨[J]. 暖通空调, 2008, 38(2):44-47,17. FU X Z, ZHANG H L, HUANG G D, et al. Discussion of climatic regions of building energy efficiency in China[J]. Heating Ventilating & Air Conditioning, 2008, 38(2):44-47,17.(in Chinese)
    [12] 徐云飞, 李琼, 孟庆林, 等. 南海岛屿气象参数与建筑能耗分析[J]. 土木建筑与环境工程, 2018, 40(4):42-47. XU Y F, LI Q, MENG Q L, et al. Meteorological parameters and building energy consumption analysis of South China Sea islands[J]. Journal of Civil,Architectural & Environmental Engineering, 2018, 40(4):42-47.(in Chinese)
    [13] 韩学廷, 李国富, 邹志胜. 关于围护结构热工性能权衡判断法的讨论[J]. 建筑节能, 2011, 39(11):44-46,53. HAN X T, LI G F, ZOU Z S. Methodology for building envelope trade-off option[J]. Building Energy Efficiency, 2011, 39(11):44-46,53.(in Chinese)
    [14] 中国建筑学会,中国建筑学会建筑师分会,华东建筑集团股份有限公司.融合之间-转型中的当代中国建筑[M].北京:中国建筑工业出版社,2017. Architectural Society of China, Institute of Chinese Architects, East China Construction Group Co. Ltd. Fusion and harmony-contemporary Chinese architrcture in the process of transition[M]. Beijing:China Architecture and Building Press, 2017. (in Chinese)
    [15] 张冉. 严寒地区低能耗多层办公建筑形态设计参数模拟研究[D]. 哈尔滨:哈尔滨工业大学, 2014. ZHANG R. Shape design parameters study of multilayer office building with low energy consumption in severe cold region based on digital simulation[D]. Harbin:Harbin Institute of Technology, 2014.(in Chinese)
    [16] 外墙外保温建筑构造:10J121[S]. 北京:中国计划出版社, 2010. Constructions of exterior wall external thermal insulation:10J121[S]. Beijing:China Planning Press, 2010.(in Chinese)
    [17] 公共建筑节能构造:06J908-1[S]. 北京:中国计划出版社, 2006. Public building energy conservation structure charts:06J908-1[S]. Beijing:China Planning Press, 2006. (in Chinese)
    [18] 严寒和寒冷地区居住建筑节能设计标准:JGJ 26-2010[S]. 北京:中国建筑工业出版社, 2010. Design standard for energy efficiency of residential buildings in severe cold and cold zone:JGJ 26-2010[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
    [19] 公共建筑节能设计标准:GB 50189-2015[S]. 北京:中国建筑工业出版社, 2015. Design standard for energy efficiency of public buildings:GB 50189-2015[S]. Beijing:China Architecture & Building Press, 2015. (in Chinese)
    [20] 杨柳, 张辰, 刘衍, 等. 建筑外表面换热系数取值方法对建筑负荷预测的影响[J]. 暖通空调, 2018, 48(9):11-18. YANG L, ZHANG C, LIU Y, et al. Influence of selection methods of external surface heat transfer coefficient on building load forecasting[J]. Heating Ventilating & Air Conditioning, 2018, 48(9):11-18.(in Chinese)
    [21] 王峥, 任毅. 我国太阳能资源的利用现状与产业发展[J]. 资源与产业, 2010, 12(2):89-92. WANG Z, REN Y, WANG Z. Utilization and development of solar energy industry in China[J]. Resources & Industries, 2010, 12(2):89-92.(in Chinese)
    [22] WALSH A, CÓSTOLA D, LABAKI L C. Performance-based validation of climatic zoning for building energy efficiency applications[J]. Applied Energy, 2018, 212:416-427.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

文泽球,刘衍,杨柳,李晨,董宏.严寒地区民用建筑热工设计二级分区指标适用性分析[J].土木与环境工程学报(中英文),2019,41(5):183-190. Wen Zeqiu, Liu Yan, Yang Liu, Li Chen, Dong Hong. Applicability analysis of the second level index for dividing climate region for building thermal design in severe cold climate zone[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2019,41(5):183-190.10.11835/j. issn.2096-6717.2019.109

复制
分享
文章指标
  • 点击次数:1070
  • 下载次数: 1375
  • HTML阅读次数: 909
  • 引用次数: 0
历史
  • 收稿日期:2019-01-12
  • 在线发布日期: 2019-10-25
文章二维码