基于外海环境预报的近岸岛礁桥址区波高ANN推算模型
CSTR:
作者:
中图分类号:

TU528.41

基金项目:

国家自然科学基金(51708455)


ANN model of wave height in nearshore island area for sea-crossing bridge based on open ocean environmental forecasting
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    中国跨海桥梁多建于近岸岛礁海域,桥址区的波浪要素随时空演变复杂。桥址区波高的准确推算对于桥梁结构设计和施工组织具有十分重要的意义。提出一种基于外海环境预报数据的近岸岛礁桥址区波高人工神经网络(ANN)推算模型,并以平潭海峡公铁两用大桥桥址海域为研究对象,运用ANN算法中常用的BP神经网络对外海海洋预报台提供的波高、风速数据以及在桥址区实测波高数据进行训练,建立二者之间的映射关系及ANN推算模型。为验证推算模型的可行性和有效性,运用上述模型对桥址区连续80 d的海浪波高进行推算,通过对比前人模型和实测数据发现,推算波高和实测波高的变化趋势基本吻合,均方根误差满足预测要求,获得了理想的预测效果。研究表明,提出的波高ANN推算模型可以利用外海预报信息进行近岸岛礁桥址区的波高推算,且建模过程较为简单。

    Abstract:

    Sea-crossing bridges in China are mainly built in nearshore island area where wave condition varies spatially. The accurate estimation of the wave height in the bridge site is of great significance for bridge design and construction organization. An artificial neural network (ANN) estimation model of wave height in nearshore island area was developed based on open ocean environmental forecasting data. Pingtan Strait sea-crossing bridge site was selected as the research object. The BP neural network commonly used in the ANN was adopted to train the data provided by the open ocean forecasting station and the measured wave height data in the bridge site area. In order to verify the feasibility of the model, the wave height in the bridge site for 80 consecutive days was estimated. By comparing the results of previous model and the measured data, it is found that the trend of the estimation and the measured value is generally consistent. The root mean square error satisfies the prediction requirements and the ideal prediction effect is obtained. The research showed that the proposed ANN estimation model can use the open ocean forecasting information to effectively estimate the wave height of the nearshore island area for sea-crossing bridge with a relatively simple modeling process.

    参考文献
    [1] XU G J, CAI C S. Numerical investigation of the lateral restraining stiffness effect on the bridge deck-wave interaction under Stokes waves [J]. Engineering Structures, 2017, 130: 112-123.
    [2] XU G J, CAI C S, HAN Y. Investigating the characteristics of the solitary wave-induced forces on coastal twin bridge decks [J]. Journal of Performance of Constructed Facilities, 2016, 30(4): 04015076.
    [3] YU J Q, HUO J, SHI Q, et al. an exploration on the organizational structure design of the Hong Kong-Zhuhai-Macao Bridge authority [C]//The 19th International Conference on Industrial Engineering and Engineering Management, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 975-985. Doi:10.1007/978-3-642-37270-4_93.
    [4] 毛科峰, 陈希, 王亮. 岛屿岛礁海域海浪能谱模型研究进展[J]. 海洋学报, 2014, 36(5): 161-169. MAO K F, CHEN X, WANG L. Research progress of spectral wave mode of archipelago or reef ocean region [J]. Acta Oceanologica Sinica, 2014, 36(5): 161-169.(in Chinese)
    [5] 魏凯, 梁春明, 徐博. 台风灾害下复杂海域桥址区波高特性研究[J]. 防灾减灾工程学报, 2018, 38(1): 124-130. WEI K, LIANG C M, XU B. Wave height characteristics at bridge site in the complex coastal area under typhoon disasters [J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(1): 124-130. (in Chinese)
    [6] 港口与航道水文规范:JTS 145—2015[S]. 北京:人民交通出版社, 2015. Code of hydrology for harbour and waterway: JTS145-2015[S]. Beijing: People's Transportation Press, 2015. (in Chinese)
    [7] TI Z L, WEI K, QIN S Q, et al. Numerical simulation of wave conditions in nearshore island area for sea-crossing bridge using spectral wave model [J]. Advances in Structural Engineering, 2018, 21(5): 756-768.
    [8] 魏凯, 徐博, 李义强. 基于实测水压力的跨海桥梁围堰波浪力计算[J]. 桥梁建设, 2018, 48(3): 50-54. WEI K, XU B, LI Y Q. Calculation of wave loads on cofferdams for sea-crossing bridge based on field measurement of hydraulic pressure [J]. Bridge Construction, 2018, 48(3): 50-54. (in Chinese)
    [9] 冯卫兵, 施凌. 复杂地形条件下的工程波要素确定[J]. 水运工程, 2008(3): 4-8,36. FENG W B, SHI L. Determination of design wave elements under complicated topographical condition [J]. Port & Waterway Engineering, 2008(3): 4-8,36. (in Chinese)
    [10] TI Z L, ZHANG M J, WU L H, et al. Estimation of the significant wave height in the nearshore using prediction equations based on the response surface method [J]. Ocean Engineering, 2018, 153: 143-153.
    [11] DESHMUKH A N, DEO M C, BHASKARAN P K, et al. Neural-network-based data assimilation to improve numerical ocean wave forecast [J]. IEEE Journal of Oceanic Engineering, 2016, 41(4): 944-953.
    [12] LONDHE S N, SHAH S, DIXIT P R, et al. A coupled numerical and artificial neural network model for improving location specific wave forecast [J]. Applied Ocean Research, 2016, 59: 483-491.
    [13] ZANUTTIGH B, FORMENTIN S M, BRIGANTI R. A neural network for the prediction of wave reflection from coastal and harbor structures [J]. Coastal Engineering, 2013, 80: 49-67.
    [14] CASTRO A, CARBALLO R, IGLESIAS G, et al. Performance of artificial neural networks in nearshore wave power prediction [J]. Applied Soft Computing, 2014, 23: 194-201.
    [15] DEO M C, JHA A, CHAPHEKAR A S, et al. Neural networks for wave forecasting [J]. Ocean Engineering, 2001, 28(7): 889-898.
    [16] JAIN P, DEO M C. Neural networks in ocean engineering [J]. Ships and Offshore Structures, 2006, 1(1): 25-35.
    [17] 齐义泉, 张志旭, 李志伟, 等. 人工神经网络在海浪数值预报中的应用[J]. 水科学进展, 2005, 16(1): 32-35. QI Y Q, ZHANG Z X, LI Z W, et al. Application of artificial neural network to numerical wave prediction [J]. Advances in Water Science, 2005, 16(1): 32-35. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

魏凯,林静,李明阳.基于外海环境预报的近岸岛礁桥址区波高ANN推算模型[J].土木与环境工程学报(中英文),2019,41(6):89-94. Wei Kai, Lin Jing, Li Mingyang. ANN model of wave height in nearshore island area for sea-crossing bridge based on open ocean environmental forecasting[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2019,41(6):89-94.10.11835/j. issn.2096-6717.2019.115

复制
分享
文章指标
  • 点击次数:579
  • 下载次数: 917
  • HTML阅读次数: 424
  • 引用次数: 0
历史
  • 收稿日期:2019-03-18
  • 在线发布日期: 2019-12-12
文章二维码