Abstract:In order to study the improvement of high-strength self-compacting concrete(HSCC) slender column after adding basalt fiber, ten HSCC slender columns in a slenderness ratio of 6 were designed for eccentric compression test, based on the parameters of basalt fiber volume in 0.1% and 0.2%, length in 15mm and 30mm.The results show that the addition of basalt fiber can significantly improve the stress performance and ductility of HSCC columns under eccentric compression. The cracking load of large and small eccentric compression members is increased by 20.7% and 11.8% respectively, and the maximum increase in ultimate bearing capacity is 18.2% and 16.7% respectively. During the compression of large and small eccentric members, the addition of basalt fiber has a remarkable impact on the concrete strain corresponding to its stress peak. When the maximum ultimate bearing capacity is reached, the maximum tensile and compressive strains are reduced by 25.0% and 15.0%; when the large eccentric compression specimens reaches the ultimate bearing capacity under the action of basalt fiber, the maximum deflection in the mid-span increases by 7.6%, which improves the member's deform-ability while has no big deflection effect by the change of fiber length and volume content.