基于MOPSO算法的斜拉桥索力优化分析
CSTR:
作者:
中图分类号:

U448.27

基金项目:

973计划(2015CB057702);湖南省教育厅创新平台资助项目(16005);贵州省重大科技专项计划([2016]3013-003)


Optimization of cable tension of cable-stayed bridges based on multi-objective particle swarm optimization algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对斜拉桥设计和监控计算中合理成桥状态和施工状态索力的确定问题,提出了一种基于MOPSO算法的斜拉桥索力优化方法。该方法在PSO算法的基础上通过增加外部储备集和优化更新策略来适应多目标、多约束的索力优化,较单目标优化方法仅有单一解的局限性,MOPSO算法考虑因素更全面,得到的Pareto最优解集可供决策者根据经验进一步筛选。采用Python编程语言,联合有限元软件编写基于该方法的优化程序,选取主塔、主梁的弯曲应变能之和,主塔成桥后在恒载作用下的纵桥向位移平方和作为目标函数,以施工过程及成桥后结构处于安全状态和索力总体分布均匀作为约束条件。工程算例优化结果表明,该方法能够快速搜寻到Pareto最优解集,并从中筛选出最优解,其结构应力处于安全范围,主塔线形合理,索力总体分布均匀。该方法可应用于斜拉桥成桥和施工阶段索力的确定及梁拱组合体系桥梁吊杆索力的确定。

    Abstract:

    To solve the problem of determining reasonable completion state and construction state in cable-stayed bridge design and monitoring calculation, a cable force optimization method based on MOPSO algorithm is proposed.This method adapts to multi-objective and multi-constraint cable force optimization by adding external reserve set and optimizing update strategy based on PSO algorithm.Compared with the single objective optimization method which has the limitation of single solution, MOPSO algorithm considers more comprehensive factors.The Pareto optimal solution set obtained by MOPSO algorithm can be further screened by decision makers based on experience.Python programming language and finite element software are used to compile the optimization program based on this method.The sum of the bending strain energy of the main tower and the main beam, and the sum of squares of longitudinal displacement under dead load is taken as the objective function after the completion of the bridge.The constraints are that the structure is in a safe state during the construction process and after the completion of the bridge and the overall distribution of cable forces is uniform.The optimization results of engineering examples show that the proposed method can quickly find the Pareto optimal solution set and select the optimal solution.The stress of the structure is in the safe range, the main tower is reasonable in alignment, and the overall distribution of cable forces is uniform.The method can be applied to determine the cable force in completion and construction of cable-stayed bridge and the suspender force of girder and arch combination bridge.

    参考文献
    [1] SONG C L, XIAO R C,SUN B. Optimization of cable pre-tension forces in long-span cable-stayed bridges considering the counterweight[J]. Engineering Structures, 2018, 172:919-928.
    [2] HASSAN M M, EL DAMATTY A A, NASSEF A O. Database for the optimum design of semi-fan composite cable-stayed bridges based on genetic algorithms[J]. Structure and Infrastructure Engineering, 2015, 11(8):1054-1068.
    [3] HA M H, VU Q A, TRUONG V H. Optimum design of stay cables of steel cable-stayed bridges using nonlinear inelastic analysis and genetic algorithm[J]. Structures, 2018, 16:288-302.
    [4] ASGARI B, OSMAN S A, ADNAN A. A new multiconstraint method for determining the optimal cable stresses in cable-stayed bridges[J]. The Scientific World Journal, 2014, 2014:1-9.
    [5] 淡丹辉, 杨通. 基于影响矩阵及粒子群算法的斜拉桥自动调索[J]. 同济大学学报(自然科学版), 2013, 41(3):355-360. DAN D H, YANG T. Automatic cableforce adjustment for cable stayed bridge based on influence matrix and particle swarm optimization algorithm[J]. Journal of Tongji University(Natural Science), 2013, 41(3):355-360. (in Chinese)
    [6] 张勇, 巩敦卫. 先进多目标粒子群优化理论及其应用[M]. 北京:科学出版社, 2016:6-12. ZHANG Y, GONG D W. Advanced multi-objective particle swarm optimization theory and its application[M]. Beijing:Science Press, 2016:6-12. (in Chinese)
    [7] 刘益铭, 刘大洋, 刘山洪. 基于MATLAB联合ANSYS的斜拉桥恒载索力优化[J]. 重庆交通大学学报(自然科学版), 2013, 32(6):1111-1114, 1194. LIU Y M, LIU D Y, LIU S H. Optimization of cable forces of cable-stayed bridges based on MATLAB and ANSYS software under dead loads[J]. Journal of Chongqing Jiaotong University(Natural Science), 2013, 32(6):1111-1114, 1194. (in Chinese)
    [8] 朱敏, 刘荣桂, 谢桂华, 等. 基于多种群遗传算法的大跨度斜拉桥索力优化[J]. 世界桥梁, 2016, 44(3):38-42. ZHU M, LIU R G, XIE G H, et al. Cable force optimization for long-span cable-stayedbridge based on multi-population genetic algorithm[J]. World Bridges, 2016, 44(3):38-42. (in Chinese)
    [9] 吴霄, 肖汝诚. 基于遗传算法的大跨度混合梁斜拉桥索力优化[J]. 江苏大学学报(自然科学版), 2014, 35(6):722-726. WU X, XIAO R C. Optimization of cable force for cable-stayed bridges with mixed stiffening girders based on genetic algorithm[J]. Journal of Jiangsu University(Natural Science Edition), 2014, 35(6):722-726. (in Chinese)
    [10] 李鸿波, 祝孝成. 基于量子粒子群算法的矮塔斜拉桥索力优化[J]. 公路交通科技(应用技术版), 2017, 13(8):231-235. LI H B, ZHU X C. Cable force optimization for low-pylon cable-stayed bridge based on QPSO algorithm[J]. Journal of Highway and Transportation Research and Development(Application Technology Edition), 2017, 13(8):231-235. (in Chinese)
    [11] 陈志军, 刘洋, 杨立飞, 等. 基于粒子群优化算法的独塔斜拉桥成桥索力优化[J]. 桥梁建设, 2016, 46(3):40-44. CHEN Z J, LIU Y, YANG L F, et al. Optimization of stay cable tension of completed bridge of single-pylon cable-stayed bridge based on particle swarm optimization algorithm[J]. Bridge Construction, 2016, 46(3):40-44. (in Chinese)
    [12] 姜增国, 朱标. 基于改进粒子群的非对称斜拉桥成桥索力优化[J]. 公路工程, 2018, 43(6):117-121. JIANG Z G, ZHU B. Cable force optimization of dissymmetric cable-stayed bridge based on improved particle swarm optimization[J]. Highway Engineering, 2018,43(6):117-121. (in Chinese)
    [13] HASSAN M M, NASSEF A O, EL DAMATTY A A. Determination of optimum post-tensioning cable forces of cable-stayed bridges[J]. Engineering Structures, 2012, 44:248-259.
    [14] COELLO COELLO C A, REYES-SIERRA M. Multi-objective particle swarm optimizers:A survey of the state-of-the-art[J]. International Journal of Computational Intelligence Research, 2006, 2(3):287-308.
    [15] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//Mhs95 Sixth International Symposium on Micro Machine & Human Science, 1995.
    [16] 胡旺, Gary G YEN, 张鑫. 基于Pareto熵的多目标粒子群优化算法[J]. 软件学报, 2014, 25(5):1025-1050. HU W,YEN G G, ZHANG X. Multiobjective particle swarm optimization based on Pareto entropy[J]. Journal of Software, 2014, 25(5):1025-1050. (in Chinese)
    [17] 张利彪, 周春光, 马铭, 等. 基于粒子群算法求解多目标优化问题[J]. 计算机研究与发展, 2004, 41(7):1286-1291. ZHANG L B, ZHOU C G, MA M, et al. Solutions of multi-objective optimization problems based on particle swarm optimization[J]. Journal of Computer Research and Development, 2004, 41(7):1286-1291. (in Chinese)
    [18] 王宇嘉. 多目标粒子群优化算法的全局搜索策略研究[D]. 上海:上海交通大学, 2008. WANG Y J. Study on the global search strategies of multi-objective particle swarm optimization[D]. Shanghai:Shanghai Jiaotong University, 2008. (in Chinese)
    [19] 项海帆. 高等桥梁结构理论[M]. 北京:人民交通出版社, 2013:387-392. XIANG H F. Advanced theory of bridge structures[M]. Beijing:China Communications Press, 2013:387-392. (in Chinese)
    [20] 梁鹏, 肖汝诚, 张雪松. 斜拉桥索力优化实用方法[J]. 同济大学学报(自然科学版), 2003, 31(11):1270-1274. LIANG P, XIAO R C, ZHANG X S. Practical method of optimization of cable tensions for cable-stayed bridges[J]. Journal of Tongji University(Natural Science), 2003, 31(11):1270-1274. (in Chinese)
    [21] 杨俊杰, 周建中, 方仍存, 等. 基于自适应网格的多目标粒子群优化算法[J]. 系统仿真学报, 2008, 20(21):5843-5847. YANG J J, ZHOU J Z, FANG R C, et al. Multi-objective particle swarm optimization based on adaptive grid algorithms[J]. Journal of System Simulation, 2008, 20(21):5843-5847. (in Chinese)
    [22] VANDENBERGH F, ENGELBRECHT A. A study of particle swarm optimization particle trajectories[J]. Information Sciences, 2006, 176(8):937-971.
    相似文献
    引证文献
引用本文

张玉平,刘雪松,李传习.基于MOPSO算法的斜拉桥索力优化分析[J].土木与环境工程学报(中英文),2020,42(2):107-114. Zhang Yuping, Liu Xuesong, Li Chuanxi. Optimization of cable tension of cable-stayed bridges based on multi-objective particle swarm optimization algorithm[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2020,42(2):107-114.10.11835/j. issn.2096-6717.2019.161

复制
分享
文章指标
  • 点击次数:891
  • 下载次数: 1535
  • HTML阅读次数: 805
  • 引用次数: 0
历史
  • 收稿日期:2019-05-22
  • 在线发布日期: 2020-04-28
文章二维码