磁流变阻尼器拟静力力学特性及力学模型
CSTR:
作者:
中图分类号:

TU352.11

基金项目:

国家重点研发计划(2016YFE0125600);河南省高等学校重点科研项目(19A560007)


Quasi-static mechanical properties and mechanical model of MRD
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究磁流变阻尼器(MRD)在拟静态作用下的力学性能,制作了一个四线圈剪切阀式MRD,在不同电流和不同位移幅值下采用三角位移加载制度对MRD进行了拟静态试验,研究了MRD的力学性能随电流和位移幅值的变化规律,分析了阻尼力波动现象产生的原因;根据试验结果提出了一种拟静态作用下修正的力学模型,对模型参数进行了识别,对力学模型进行了验证。结果表明:所用阻尼器在拟静态试验过程中阻尼力波动现象显著,无电流时阻尼力随着位移幅值增加而略微减小,有电流时阻尼力随着位移幅值增加而稍微增大;阻尼力随电流的增大明显增大,当电流超过1.5 A时,MRD达到磁饱和状态,阻尼力增幅明显降低;提出的力学模型能够较好地描述拟静力下阻尼力随电流和位移的改变而产生的变化特性。

    Abstract:

    In order to study the mechanical properties of Magnetorheological Damper (MRD) under quasi-static action, a four-coil shear valve MRD was fabricated. A quasi-static test was carried on the MRD by using the triangular displacement loading system under different currents and displacements. In the test, the variation of the mechanical properties of MRD with the changes of current and displacement was studied, and the causes of the damping force fluctuation phenomenon were analyzed. Based on the test results, a modified mechanical model under quasi-static loading was proposed, the parameters of the model were identified, and the mechanical model was verified. The results show that the damping force of MRD fluctuates remarkably during the quasi-static test process. The damping force decreases slightly with the increase of displacement amplitude when there is no current, and increases slightly with the increase of displacement amplitude when there is current. The damping force increases obviously with the increase of current, and when the current exceeds 1.5A, MRD reaches magnetic saturation and the increase of damping force decreases obviously. The mechanical model proposed in this paper can well describe the variation of damping force with the change of current and displacement under quasi-static force.

    参考文献
    [1] FERDAUS M M, RASHID M M, HASAN M H, et al. Optimal design of magneto-rheological damper comparing different configurations by finite element analysis[J]. Journal of Mechanical Science and Technology, 2014, 28(9):3667-3677.
    [2] 胡国良, 张佳伟. 磁流变阻尼器结构优化设计研究现状[J]. 机床与液压, 2019, 47(1):145-150. HU G L, ZHANG J W. State of the art review on structural optimization design of magnetorheological damper[J]. Machine Tool & Hydraulics, 2019, 47(1):145-150. (in Chinese)
    [3] CHOOI W W, OYADIJI S O. Design, modelling and testing of magnetorheological (MR) dampers using analytical flow solutions[J]. Computers & Structures, 2008, 86(3/4/5):473-482.
    [4] DAVIS L C. Model of magnetorheological elastomers[J]. Journal of Applied Physics, 1999, 85(6):3348-3351.
    [5] SHOU M J. Dynamic behavior of magnetorheological energy absorber under impact loading[J]. Journal of Mechanical Engineering, 2019, 55(1):72.
    [6] LI R, ZHOU M J, WU M J, et al. Semi-active predictive control of isolated bridge based on magnetorheological elastomer bearing[J]. Journal of Shanghai Jiaotong University (Science), 2019, 24(1):64-70.
    [7] GURUBASAVARAJU T M, KUMAR H, MAHALINGAM A. An approach for characterizing twin-tube shear-mode magnetorheological damper through coupled FE and CFD analysis[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(3):139.
    [8] 梅真, 高毅超, 郭子雄. 磁流变阻尼器动力性能测试与建模[J]. 振动.测试与诊断, 2017, 37(3):553-559, 632. MEI Z, GAO Y C, GUO Z X.Dynamic testing and modeling of a magnetorheological damper[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(3):553-559, 632. (in Chinese)
    [9] 于国军, 杜成斌. 一种复合磁流变阻尼器的设计及性能试验[J]. 力学季刊, 2014, 35(1):131-138. YU G J, DU C B. Design and experimental studies on composite magneto-rheological damper[J]. Chinese Quarterly of Mechanics, 2014,35(1):131-138. (in Chinese)
    [10] 张香成, 徐赵东, 王绍安, 等. 磁流变阻尼器的米氏模型及试验验证[J]. 工程力学, 2013, 30(3):251-255. ZHANG X C, XU Z D, WANG S A, et al. Michaelis-menten model of magnetorheological damper and test verification[J]. Engineering Mechanics, 2013, 30(3):251-255. (in Chinese)
    [11] PARLAK Z, ENGIN T. Time-dependent CFD and quasi-static analysis of magnetorheological fluid dampers with experimental validation[J]. International Journal of Mechanical Sciences, 2012, 64(1):22-31.
    [12] ZOLFAGHARIAN M M, KAYHANI M H, NOROUZI M, et al. Parametric investigation of twin tube magnetorheological dampers using a new unsteady theoretical analysis[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(6):878-895.
    [13] SPENCER B F J, DYKE S J, SAIN M K, et al. Phenomenological model for magnetorheological dampers[J]. Journal of Engineering Mechanics, 1997, 123(3):230-238.
    [14] 马春红, 白少先, 康盼. 氟橡胶O型圈低压气体密封黏滞摩擦特性实验[J]. 摩擦学学报, 2014, 34(2):160-164. MA C H, BAI S X, KANG P. Experiment of viscous friction characteristics of fluorous rubber O-rings at low gas seal pressure[J]. Tribology, 2014, 34(2):160-164. (in Chinese)
    [15] 姚军, 张进秋, 贾进峰, 等. 挤压式磁流变减振器力学模型研究[J]. 中国工程机械学报, 2015, 13(6):497-503. YAO J, ZHANG J Q, JIA J F, et al. Study on mechanics model of squeeze flow type of magnetoreological fluid damper[J]. Chinese Journal of Construction Machinery, 2015, 13(6):497-503. (in Chinese)
    [16] 朱俊涛, 徐赵东, 张香成. 磁流变弹性体主链吸附模型[J]. 东南大学学报(自然科学版), 2011, 41(2):342-346. ZHU J T, XU Z D, ZHANG X C. Main chain adsorption model of magnetorheological elastomer[J]. Journal of Southeast University(Natural Science Edition), 2011, 41(2):342-346. (in Chinese)
    [17] 阮晓辉. 磁流变液力学性能及其应用研究[D]. 合肥:中国科学技术大学, 2017. RUAN X H. Study on the mechanical properties and applications of magnetorheological fluid[D]. Hefei:University of Science and Technology of China, 2017.(in Chinese)
    [18] 张香成, 何尚文, 李倩, 等. 铅-磁流变阻尼器的试验及计算模型[J]. 工程力学, 2016, 33(10):123-128. ZHANG X C, HE S W, LI Q, et al. Test and mathematic model of lead magnetorheological damper[J]. Engineering Mechanics, 2016, 33(10):123-128. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张香成,毋贵斌,赵军.磁流变阻尼器拟静力力学特性及力学模型[J].土木与环境工程学报(中英文),2020,42(3):46-53. Zhang Xiangcheng, Wu Guibin, Zhao Jun. Quasi-static mechanical properties and mechanical model of MRD[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2020,42(3):46-53.10.11835/j. issn.2096-6717.2019.175

复制
分享
文章指标
  • 点击次数:840
  • 下载次数: 1143
  • HTML阅读次数: 846
  • 引用次数: 0
历史
  • 收稿日期:2019-08-01
  • 在线发布日期: 2020-06-13
文章二维码