基于EEMD-JADE的桥梁挠度监测中温度效应的分离
CSTR:
作者:
中图分类号:

U441

基金项目:

国家自然科学基金(51408452);道路桥梁与结构工程湖北省重点实验室(武汉理工大学)开放基金(DQJJ201906)


Separation of bridge deflection temperature effect based on EEMD-JADE
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • | | | |
  • 文章评论
    摘要:

    针对桥梁挠度各成分的分离问题,提出一种基于EEMD-JADE的单通道盲源分离算法。首先,利用传统的集合经验模态分解法(Ensemble Empirical Mode Decomposition,EEMD)将单通道的桥梁挠度信号分解为一系列线性平稳的本征模函数(Intrinsic Mode Function,IMF);然后,采用基于能量熵增量的判别法识别并剔除虚假的IMF分量,将能量熵增量较大的IMF分量组成盲源分离模型的输入信号;最后,采用矩阵联合近似对角化(Joint Approximate Diagonalization of Eigen-matrices,JADE)算法对输入信号进行盲源分离。JADE算法在源信号频率差异较小且频率有所混叠的状况下也能较好地分离出源信号,但要求观测信号数必须大于等于源信号数目;EEMD具有良好的自适应性,能够将单通道的混合信号进行多尺度分解,形成多通道信号,但分解结果存在端点效应与模态混叠。JADE算法能够解决EEMD分解结果存在的端点效应与模态混叠问题,且EEMD也解决了JADE分离算法的先决条件。两种算法优势互补,能够较好地分离出各挠度组分。通过有限元软件Midas/civil建立了背景桥梁模型,经仿真分析得到了各单项因素作用下的桥梁结构响应,并将其叠加在一起作为待分离的混合挠度信号。仿真信号分离的结果与源信号的相关系数均在0.98以上,说明分离效果较好。最后,采集实测挠度信号进行分离,处于对称位置测点分离出的各挠度组分的相关系数均在0.9以上,证明了该算法的适用性。

    Abstract:

    For the seperation problem of bridge deflection monitoring, it presents a single channel blind source separation algorithm based on EEMD-JADE. First, the single channel signal of bridge deflection is decomposed into a series of linear and stationary intrinsic mode function (intrinsic mode function, IMF) by traditional ensemble empirical mode decomposition (EEMD), and then using the discriminant method based on the energy entropy increment to identify and eliminate the false IMF component. The IMF component with larger energy entropy increment compose the input signal of the blind source separation model. Finally, the Joint Approximate Diagonalization of Eigen-matrices (JADE) algorithm is used for blind source separation of the input signal. JADE can also separate the source signal well under the condition that the frequency difference of the source signal is small and the frequency is mixed, but the number of observed signals must be greater than or equal to the number of source signals. The Ensemble Empirical Mode Decomposition (EEMD) has good adaptability, which can decompose the mixed signals of single channel into multi-scale and form multi-channel signal, but the decomposition result has the endpoint effect and the modal aliasing. JADE algorithm can solve the end-point effect and modal aliasing problem in the decomposition result of EEMD, while EEMD also solves the prerequisite of JADE separation algorithm. The two algorithms have complementary advantages and can better separate the deflection components. With the model of background bridge established by the finite element software Midas/civil, the response of the bridge structure under the action of each single factor is obtained by the simulation analysis, and it is superimposed together as a mixed deflection signal to be separated. The correlation coefficient between the result of the simulation signal separation and the source signal is above 0.98, and the separation effect is better. Finally, the measured deflection signals are collected for separation. The correlation coefficients of the deflection components separated at the symmetric position are above 0.9, which proves the applicability of the algorithm.

    参考文献
    [1] 袁俊桃, 王卫锋. 大跨度连续梁桥温度效应分析与实验研究[J]. 广东工业大学学报, 2010, 27(3):88-92. YUAN J T, WANG W F. The analysis of temperature-effect and study of long span continuous beam bridges[J]. Journal of Guangdong University of Technology, 2010, 27(3):88-92. (in Chinese)
    [2] 赵晓健, 王卫锋. 大跨度连续刚构桥箱梁温度监测与温度效应研究[J]. 科学技术与工程, 2010, 10(20):5110-5113. ZHAO X J, WANG W F. Analysis and monitoring of temperature-effect for concrete box girder in long-span continuous rigid frame bridge[J]. Science Technology and Engineering, 2010, 10(20):5110-5113. (in Chinese)
    [3] 梁宗保. 基于监测信息统计分析的桥梁结构安全评价研究[D]. 重庆:重庆大学, 2006. LIANG Z B. Research on safety evaluation of bridge structures based on statistical analysis of monitoring information[D]. Chongqing:Chongqing University, 2006. (in Chinese)
    [4] 刘纲, 邵毅敏, 黄宗明, 等. 长期监测中结构温度效应分离的一种新方法[J]. 工程力学, 2010, 27(3):55-61, 100. LIU G, SHAO Y M, HUANG Z M, et al. A new method to separate temperature effect from long-term structural health monitoring data[J]. Engineering Mechanics, 2010, 27(3):55-61, 100. (in Chinese)
    [5] 刘夏平, 杨红, 孙卓, 等. 基于LS-SVM的桥梁挠度监测中温度效应分离[J]. 铁道学报, 2012, 34(10):91-96. LIU X P, YANG H, SUN Z, et al. Study on separation of bridge deflection temperature effect based on LS-SVM[J]. Journal of the China Railway Society, 2012, 34(10):91-96. (in Chinese)
    [6] 杨红, 孙卓, 刘夏平, 等. 基于多最小二乘支持向量机的桥梁温度挠度效应的分离[J]. 振动与冲击, 2014, 33(1):71-76, 88. YANG H, SUN Z, LIU X P, et al. Separation of bridge temperature deflection effect based on M-LS-SVM[J]. Journal of Vibration and Shock, 2014, 33(1):71-76, 88. (in Chinese)
    [7] TANG C H, YANG H, LIU X P, et al. Separation of bridge deflection signals based on ICA[J]. Advanced Materials Research, 2011, 374-377:2090-2095.
    [8] 杨红, 刘夏平, 崔海霞, 等. 大跨径桥梁实时动态挠度信号的分离[J]. 振动.测试与诊断, 2015, 35(1):42-49, 186. YANG H, LIU X P, CUI H X, et al. Separation of real-time dynamic deflection signals of long-span bridges[J]. Journal of Vibration,Measurement & Diagnosis, 2015, 35(1):42-49, 186. (in Chinese)
    [9] 唐春会. 大跨径PC梁桥挠度信号分离研究[D]. 广州:广州大学, 2012. TANG C H. Research on the separation methods of long-span PC girder bridge's deflection signal[D]. Guangzhou:Guangzhou University, 2012.(in Chinese)
    [10] 黎恒. 经验模态分解中的优化理论与方法研究[D]. 西安:西安电子科技大学, 2017. LI H. Research on the theory and approach of key issues for empirical mode decomposition[D]. Xi'an:Xidian University, 2017.(in Chinese)
    [11] 郭一娜.单通道线性混合信号盲源分离算法研究[M]. 北京:电子工业出版社, 2016. GUO Y N. Research on blind source seperation algorithm for single channel linear mixed signals[M]. Beijing:Electronics Industry Press, 2016. (in Chinese)
    [12] WU Z H, HUANG N E. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1):1-41.
    [13] 张梅军, 唐建, 何晓晖. EEMD方法及其在机械故障诊断中的应用[M].北京:国防工业出版社, 2015. ZHANG M J, TANG J, HE X H. EEMD method and its application in mechnical fault diagnosis[M]. Bejing:National Defence Iadustry Press. 2015. (in Chinese)
    [14] 赵欢, 王纲金, 赵丽霞. 一种新的对数能量谱熵语音端点检测方法[J]. 湖南大学学报(自然科学版), 2010, 37(7):72-77. ZHAO H, WANG G J, ZHAO L X. A new voice activity detection using logarithmic energy spectral entropy[J]. Journal of Hunan University(Natural Sciences), 2010, 37(7):72-77. (in Chinese)
    [15] CARDOSO J F, SOULOUMIAC A. Blind beamforming for non-Gaussian signals[J]. IEE Proceedings F Radar and Signal Processing, 1993, 140(6):362.
    [16] CARDOSO J F. High-order contrasts for independent component analysis[J]. Neural Computation, 1999, 11(1):157-192.
    [17] 范虹, 孟庆丰, 张优云, 等. 基于滤波器组和高阶累积量的信号特征检测[J]. 振动与冲击, 2007, 26(2):29-32, 173. FAN H, MENG Q F, ZHANG Y Y, et al. Signal feature detection based on filter bank and higher order cumulants[J]. Journal of Vibration and Shock, 2007, 26(2):29-32, 173. (in Chinese)
    [18] SONG X J, TA D A, WANG W Q. Analysis of superimposed ultrasonic guided waves in long bones by the joint approximate diagonalization of eigen-matrices algorithm[J]. Ultrasound in Medicine & Biology, 2011, 37(10):1704-1713.
    [19] 陈国良, 林训根, 岳青, 等. 基于时间序列分析的桥梁长期挠度分离与预测[J]. 同济大学学报(自然科学版), 2016, 44(6):962-968. CHEN G L, LIN X G, YUE Q, et al. Study on separation and forecast of long-term deflection based on time series analysis[J]. Journal of Tongji University(Natural Science), 2016, 44(6):962-968. (in Chinese)
    [20] 张安清. 盲分离技术及其在水声信号中的应用研究[D]. 辽宁大连:大连理工大学, 2006. ZHANG A Q. Study on blind separation technology and its application of underwater acoustic signals[D]. Dalian, Liaoning:Dalian University of Technology, 2006.(in Chinese)
    [21] GELLE G, COLAS M, DELAUNAY G. Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis[J]. Mechanical Systems and Signal Processing, 2000, 14(3):427-442.
    [22] 亓宝龙. 北斗导航定位系统在桥梁监测中的应用[J]. 建设科技, 2016(6):39-41. QI B L. Application of Beidou navigation and positioning system in bridge monitoring[J]. Construction Science and Technology, 2016(6):39-41. (in Chinese)
    [23] 姜文超, 冯仲伟, 朱宏伟. 北斗卫星导航系统在铁路工务工程中的应用探讨[J]. 铁道建筑, 2015(9):128-130. JIANG W C, FENG Z W, ZHU H W. Discussion on the application of Beidou satellite navigation system in railway engineering[J]. Railway Engineering, 2015(9):128-130. (in Chinese)
    [24] LIU Y, DENG Y, CAI C S. Deflection monitoring and assessment for a suspension bridge using a connected pipe system:A case study in China[J]. Structural Control and Health Monitoring, 2015, 22(12):1408-1425.
    [25] 丁幼亮, 卞宇, 赵瀚玮, 等. 公铁两用斜拉桥竖向挠度的长期监测与分析[J]. 铁道科学与工程学报, 2017, 14(2):271-277. DING Y L, BIAN Y, ZHAO H W, et al. Long-term monitoring and analysis of vertical deflections of a highway-railway cable-stayed bridge under operation conditions[J]. Journal of Railway Science and Engineering, 2017, 14(2):271-277. (in Chinese)
    [26] 黄进文. 移动平均滤波对Logistic混沌信号的影响[J]. 保山学院学报, 2015, 34(5):18-21. HUANG J W. The influence on logistic chaos signal by moving average filtering[J]. Journal of Baoshan University, 2015, 34(5):18-21. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谭冬梅,刘晓飞,姚欢,聂顺,吴浩.基于EEMD-JADE的桥梁挠度监测中温度效应的分离[J].土木与环境工程学报(中英文),2020,42(3):90-99. Tan Dongmei, Liu Xiaofei, Yao Huan, Nie Shun, Wu Hao. Separation of bridge deflection temperature effect based on EEMD-JADE[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2020,42(3):90-99.10.11835/j. issn.2096-6717.2020.012

复制
分享
文章指标
  • 点击次数:1016
  • 下载次数: 1082
  • HTML阅读次数: 617
  • 引用次数: 0
历史
  • 收稿日期:2019-09-24
  • 在线发布日期: 2020-06-13
文章二维码