摆式电涡流TMD-钢框架结构的耦合计算方法与减震分析
CSTR:
作者:
基金项目:

国家重点研发计划(2016YFC0802205);四川省科技计划(2019YJ0222);科技部资助项目(KY201801005)


Coupling calculation method and seismic analysis of pendulum eddy current TMD-steel frame structures
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    摆式电涡流TMD作为一种新型阻尼器,多用于人致振动和风振控制,较少应用抗震工程,也缺乏较好的计算方法。为研究摆式电涡流TMD的减震性能及合理的质量比μm,根据摆式电涡流TMD的力学特性,提出一种基于联合仿真的耦合计算方法,根据现行建筑抗震设计规范,分别建立了5、10、20层钢框架结构模型,设计了5组不同μm的摆式电涡流TMD,并采用提出的耦合计算方法,对摆式电涡流TMD钢框架结构模型进行了动力时程分析,得到了罕遇地震作用下结构的层位移、层间位移角、层剪力和层加速度与μm的关系曲线,并与无TMD结构的地震响应进行了对比。研究结果表明:提出的耦合计算方法可行且有效,摆式电涡流TMD可有效降低钢框架结构的地震响应,当μm为3%时较为合理。其中,20层钢框架结构的层位移、层间位移角、层剪力和层加速度分别减小26.5%、20.9%、4.3%、7.3%。

    Abstract:

    Pendulum eddy current TMD as a new type of damper is often used in the control of human-induced vibration and wind-induced vibration, but seldom used in seismic engineering. And there is still a lack of effective calculation methods. In this paper, a coupling calculation method based on joint simulation is proposed to investigate the damping performance and reasonable value of mass ratio. A numerical model is established for 5-story, 10-story and 20-story steel frame structures along with five groups of pendulum eddy current TMDs with different mass ratios, which conform to the current Seismic design code for buildings and mechanical properties of pendulum eddy current TMD. A dynamic time-history analysis is performed on the numerical model by using coupling calculation method. The analysis yields a series of curves of story drift, interstory drift ratio, story shear force, and story acceleration versus mass ratio under rare earthquakes. The analysis results are compared to the results of the control model that has no pendulum eddy current TMD. The comparison shows the feasibility of the proposed coupling calculation method and that pendulum eddy current TMD can effectively reduce the seismic response of the steel frame, with a 26.5% reduction for story drift, 20.9% for interstory drift ratio, 4.3% for story shear force, and 7.3% for story acceleration of a 20-story steel frame structure when the reasonable mass ratio is recommended to be 3%.

    参考文献
    [1] VARELA W D, BATTISTA R C. Control of vibrations induced by people walking on large span composite floor decks[J]. Engineering Structures, 2011, 33(9):2485-2494.
    [2] 潘毅, 王双旭, 郭瑞, 等. 行人扶梯荷载作用下悬挑楼盖的振动测试与舒适度评价[J]. 土木与环境工程学报(中英文), 2019, 41(3):85-95. PAN Y, WANG S X, GUO R, et al. Vibration test and comfort evaluation of cantilever floor under pedestrian-escalator load[J]. Journal of Civil and Environmental Engineering, 2019, 41(3):85-95. (in Chinese)
    [3] 国巍, 曾晨, 潘毅, 等. 基于增量动力分析法的高层建筑-阻尼器系统地震易损性分析[J]. 土木与环境工程学报(中英文), 2019, 41(4):59-68. GUO W, ZENG C, PAN Y, et al. IDA based seismic fragility analysis of high-rise building-damper system[J]. Journal of Civil and Environmental Engineering, 2019, 41(4):59-68. (in Chinese)
    [4] 陈政清, 黄智文, 王建辉, 等. 桥梁用TMD的基本要求与电涡流TMD[J]. 湖南大学学报(自然科学版), 2013, 40(8):6-10. CHEN Z Q, HUANG Z W, WANG J H, et al. Basic requirements of tuned mass damper for bridges and the eddy current TMD[J]. Journal of Hunan University(Natural Sciences), 2013, 40(8):6-10. (in Chinese)
    [5] 李爱群, 陈鑫, 张志强. 大跨楼盖结构减振设计与分析[J]. 建筑结构学报, 2010, 31(6):160-170. LI A Q, CHEN X, ZHANG Z Q. Design and analysis on vibration control of long-span floor structures[J]. Journal of Building Structures, 2010, 31(6):160-170. (in Chinese)
    [6] FUJINO Y, YOSHIDA Y. Wind-induced vibration and control of trans-Tokyo bay crossing bridge[J]. Journal of Structural Engineering, 2002, 128(8):1012-1025.
    [7] 徐怀兵, 欧进萍. 设置混合调谐质量阻尼器的高层建筑风振控制实用设计方法[J]. 建筑结构学报, 2017, 38(6):144-154. XU H B, OU J P. Design method for wind-induced vibration control of high-rise buildings with hybrid tuned mass dampers[J]. Journal of Building Structures, 2017, 38(6):144-154. (in Chinese)
    [8] 叶献国, 蒋庆, 卢文胜, 等. 钢筋混凝土巨型框架结构及附单向TMD装置的减震结构振动台试验研究[J]. 建筑结构学报, 2014, 35(2):1-7. YE X G, JIANG Q, LU W S, et al. Shaking table model test analysis of a reinforced concrete mega-frame structure without and with TMD[J]. Journal of Building Structures, 2014, 35(2):1-7. (in Chinese)
    [9] 秦丽, 彭凌云, 李业学. 变摩擦系数式变摩擦TMD及其减震控制效果研究[J]. 土木工程学报, 2013, 46(11):81-88. QIN L, PENG L Y, LI Y X. Study on variable friction TMD with friction coefficient changeable and its seismic control effectiveness[J]. China Civil Engineering Journal, 2013, 46(11):81-88. (in Chinese)
    [10] 高剑, 王忠凯, 潘毅, 等. 罕遇地震下石化钢结构减震的关键影响因素[J]. 土木建筑与环境工程, 2016, 38(1):92-99. GAO J, WANG Z K, PAN Y, et al. Influence factors of vibration reduction in petrochemical steel structure under rare earthquake[J]. Journal of Civil, Architectural & Environmental Engineering, 2016, 38(1):92-99. (in Chinese)
    [11] WANG Z H, CHEN Z Q, WANG J H. Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism[J]. Earthquake Engineering and Engineering Vibration, 2012, 11(3):391-401.
    [12] BAE J S, HWANG J H, ROH J H, et al. Vibration suppression of a cantilever beam using magnetically tuned-mass-damper[J]. Journal of Sound and Vibrat捩瑯畮爬攠?‰㈱????″????????????椶游??格楢湲放獛攱?] BOURQUIN F, CARUSO G, PEIGNEY M, et al. Magnetically tuned mass dampers for optimal vibration damping of large structures[J]. Smart Materials and Structures, 2014, 23(8):085009.
    [14] LU Z, HUANG B, ZHANG Q, et al. Experimental and analytical study on vibration control effects of eddy-current tuned mass dampers under seismic excitations[J]. Journal of Sound and Vibration, 2018, 421:153-165.
    [15] LU Z, WANG D C, ZHOU Y. Experimental parametric study on wind-induced vibration control of particle tuned mass damper on a benchmark high-rise building[J]. The Structural Design of Tall and Special Buildings, 2017, 26(8):e1359.
    [16] 汪志昊, 陈政清. 永磁式电涡流调谐质量阻尼器的研制与性能试验[J]. 振动工程学报, 2013, 26(3):374-379. WANG Z H, CHEN Z Q. Development and performance tests of an eddy-current tuned mass damper with permanent magnets[J]. Journal of Vibration Engineering, 2013, 26(3):374-379. (in Chinese)
    [17] 汪志昊, 华旭刚, 陈政清, 等. 基于微型永电磁式涡流阻尼TMD的人行桥模型减振试验研究[J]. 振动与冲击, 2014, 33(20):129-132, 139. WANG Z H, HUA X G, CHEN Z Q, et al. Experimental study on vibration control of a model footbridge by a tiny eddy-current tuned mass damper with permanent magnets[J]. Journal of Vibration and Shock, 2014, 33(20):129-132, 139. (in Chinese)
    [18] 田晴, 赵崇锦, 王忠凯, 等. 新疆某超高层住宅楼动力弹塑性分析[J]. 土木建筑与环境工程, 2017, 38(Sup2):30-34. TIAN Q, ZHAO C J, WANG Z K, et al. Elastic and plastic dynamic analysis of a super high-rise residential building in Xinjiang[J]. Journal of Civil, Architectural & Environmental Engineering, 2017, 38(Sup2):30-34. (in Chinese)
    [19] 雷旭, 牛华伟, 陈政清, 等. 大跨度钢拱桥吊杆减振的新型电涡流TMD开发与应用[J]. 中国公路学报, 2015, 28(4):60-68, 85. LEI X, NIU H W, CHEN Z Q, et al. Development and application of a new-type eddy current TMD for vibration control of hangers of long-span steel arch bridges[J]. China Journal of Highway and Transport, 2015, 28(4):60-68, 85. (in Chinese)
    [20] 宋伟宁, 徐斌. 上海中心大厦新型阻尼器效能与安全研究[J]. 建筑结构, 2016, 46(1):1-8. SONG W N, XU B. Research on performance and safety of innovated damper for Shanghai Tower[J]. Building Structure, 2016, 46(1): 1-8. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

潘毅,包韵雷,国巍,陈业宏.摆式电涡流TMD-钢框架结构的耦合计算方法与减震分析[J].土木与环境工程学报(中英文),2020,42(4):84-93. Pan Yi, Bao Yunlei, Guo Wei, Chen Yehong. Coupling calculation method and seismic analysis of pendulum eddy current TMD-steel frame structures[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2020,42(4):84-93.10.11835/j. issn.2096-6717.2020.055

复制
分享
文章指标
  • 点击次数:507
  • 下载次数: 1002
  • HTML阅读次数: 851
  • 引用次数: 0
历史
  • 收稿日期:2020-02-19
  • 在线发布日期: 2020-08-10
文章二维码