近海盐雾区钢筋混凝土圆形截面构件承载力退化研究
CSTR:
作者:
中图分类号:

TU375.3

基金项目:

国家自然科学基金(51578157);福建省科技计划引导性项目(2009Y004)


Bearing capacity degradation of reinforced concrete circular members at coastal atmosphere zone
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    基于半无限平板单元的平板扩散模型常常直接被用来预测钢筋混凝土圆柱开始腐蚀时间,而忽视截面形状对氯离子扩散的影响。采用考虑时变性及圆形形状特性的扩散方程,分析了近海盐雾区圆形截面形状对开始腐蚀时间的影响。分析结果表明,海岸线距离越远、半径越小,采用平板扩散模型高估开始腐蚀时间的现象越明显。提出腐蚀钢筋混凝土圆柱截面承载力计算模型,进一步探讨了半径对不同服役期近海盐雾区截面承载力退化率的影响。研究结果表明,随着半径的增大,钢筋腐蚀对截面承载力的影响变小。当混凝土圆柱暴露在重度盐雾区时,可直接采用平板扩散模型评估钢筋开始腐蚀时间。为了控制采用平板扩散模型所引起的退化率差值在5%内,当钢筋混凝土圆柱暴露在轻度盐雾区且半径小60 cm时,需考虑形状对开始腐蚀时间的影响,进一步评估圆柱截面不同服役期截面剩余承载力。

    Abstract:

    The slab diffusion model based on semi-infinite slab element is usually used to estimate the time to corrosion initiation of RC (reinforced concrete) circular column exposed to coastal atmosphere zone, which ignoring the effect of the circular across-section. The diffusion model considering the diffusion coefficient as time-dependent variable and the effect of circular across-section shape, the influence of the shape of circular RC column exposed at coastal atmospheric zone on the corrosion initiation time is analyzed. The results show that with the coastline increasing and the radius decreasing the overestimation of the corrosion initiation time by using the slab diffusion model is the more obvious. A model for calculating the bearing capacity of corroded reinforced concrete columns is presented, the effect of the radius value on evaluating the degradation rate of bearing capacity of the column at coastal atmosphere zone under different service periods is further discussed. The research results show that the increase of radius result in the reduction of the influence of corrosion on bearing capacity. In the scenario of the RC column located at heavy salt fog zone, the slab diffusion model can be directly used to evaluate the corrosion time. However, in order to control the degradation rate difference value caused by using slab diffusion model within 5%, the effect of shape on corrosion initiation time should be considered when this column is exposed to the light salt fog zone and the radius is less 60cm. And the residual bearing capacity of RC circular column with different service periods is further evaluated.

    参考文献
    [1] TUUTTI K. Corrosion of steel in concrete[R]. Swedish Cement and Concrete Research Institute,1982:82.
    [2] AKIYAMA M, FRANGOPOL D M. Long-term seismic performance of RC structures in an aggressive environment:emphasis on bridge piers[J]. Structure and Infrastructure Engineering, 2014, 10(7):865-879.
    [3] TAPAN M, ABOUTAHA R S. Strength evaluation of deteriorated RC bridge columns[J]. Journal of Bridge Engineering, 2008, 13(3):226-236.
    [4] GUO A X, YUAN W T, LI H T, et al. Structural strength deterioration of coastal bridge piers considering non-uniform corrosion in marine environments[J]. Earthquake Engineering and Engineering Vibration, 2018, 17(2):429-444.
    [5] COLLEPARDI M, MARCIALIS A, TURRIZIANI R. Penetration of chloride ions into cement pastes and concretes[J]. Journal of the American Ceramic Society, 1972, 55(10):534-535.
    [6] MANGAT P S, MOLLOY B T. Prediction of long term chloride concentration in concrete[J]. Materials and Structures, 1994, 27(6):338-346.
    [7] VAL D V, TRAPPER P A. Probabilistic evaluation of initiation time of chloride-induced corrosion[J]. Reliability Engineering & System Safety, 2008, 93(3):364-372.
    [8] 胡守旺, 彭建新, 张建仁. 混凝土中氯离子扩散数值分析方法及实桥应用[J]. 铁道科学与工程学报, 2017, 14(12):2570-2578. HU S W, PENG J X, ZHANG J R. Numerical simulation method of the chloride ion diffusion in concrete and its application in bridge[J]. Journal of Railway Science and Engineering, 2017, 14(12):2570-2578. (in Chinese)
    [9] SHAFEI B, ALIPOUR A. Estimation of corrosion initiation time in reinforced concrete bridge columns:how to incorporate spatial and temporal uncertainties[J]. Journal of Engineering Mechanics, 2015, 141(10):04015037.
    [10] MORGA M, MARANO G C. Chloride penetration in circular concrete columns[J]. International Journal of Concrete Structures and Materials, 2015, 9(2):173-183.
    [11] SONG H W, LEE C H, ANN K Y. Factors influencing chloride transport in concrete structures exposed to marine environments[J]. Cement and Concrete Composites, 2008, 30(2):113-121.
    [12] PACK S W, JUNG M S, SONG H W, et al. Prediction of time dependent chloride transport in concrete structures exposed to a marine environment[J]. Cement and Concrete Research, 2010, 40(2):302-312.
    [13] 汪加梁, 杨绿峰, 余波. 圆形截面混凝土中氯离子时变扩散解析模型[J]. 水利水运工程学报, 2019(5):76-84. WANG J L, YANG L F, YU B. Analytical model for time-dependent chloride diffusion in circular section concrete[J]. Hydro-Science and Engineering, 2019(5):76-84. (in Chinese)
    [14] MCGEE R W. MCGEE R. Modelling of durability performance of Tasmanian bridges[C]//ICASP8 applications of statistics and probability in civil engineering, 2001:297-306.
    [15] AKIYAMA M, FRANGOPOL D M, SUZUKI M. Integration of the effects of airborne chlorides into reliability-based durability design of reinforced concrete structures in a marine environment[J]. Structure and Infrastructure Engineering, 2012, 8(2):125-134.
    [16] BENTZ E C, THOMAS M D A. Life-365 service life prediction model and computer program for predicting the service life and life-cycle costs of reinforced concrete exposed to chlorides[R]. Version 2.0. 2008.
    [17] YIN G, PAN L. The effect of shape on chloride penetration of circular reinforcement concrete columns and its durability design[J]. Applied Sciences, 2020, 10(2):459.
    [18] 混凝土结构耐久性设计与施工指南:CCES 01-2004[S]. 北京:中国建筑工业出版社, 2005. Guide for durability design and construction of concrete structures:CCES 01-2004[S]. Beijing:China Architecture & Building Press, 2005. (in Chinese)
    [19] VU K A T, STEWART M G. Structural reliability of concrete bridges including improved chloride-induced corrosion models[J]. Structural Safety, 2000, 22(4):313-333.
    [20] DU Y G, CLARK L A, CHAN A H C. Residual capacity of corroded reinforcing bars[J]. Magazine of Concrete Research, 2005, 57(3):135-147.
    [21] VAL D V, MELCHERS R E. Reliability of deteriorating RC slab bridges[J]. Journal of Structural Engineering, 1997, 123(12):1638-1644.
    [22] LIU T, WEYERS R. Modeling the dynamic corrosion process in chloride contaminated concrete structures[J]. Cement and Concrete Research, 1998, 28(3):365-379.
    [23] QI L K, SEKI H. Analytical study on crack generation situation and crack width due to reinforcing steel corrosion[J]. Doboku Gakkai Ronbunshu, 2001,669:161-171.
    [24] CUI F K, ZHANG H N, GHOSN M, et al. Seismic fragility analysis of deteriorating RC bridge substructures subject to marine chloride-induced corrosion[J]. Engineering Structures, 2018, 155:61-72.
    [25] CORONELLI D, GAMBAROVA P. Structural assessment of corroded reinforced concrete beams:modeling guidelines[J]. Journal of Structural Engineering, 2004, 130(8):1214-1224.
    [26] VU K A, STEWART M G. Predicting the likelihood and extent of reinforced concrete corrosion-induced cracking[J]. Journal of Structural Engineering, 2005, 131(11):1681-1689.
    [27] MANDER J B, PRIESTLEY M J, PARK R. Theoretical stress-strain model for confined concrete[J]. Journal of Structure Engineering, 1988, 114(8):1804-182.
    [28] 混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社, 2010. Code for design of concrete structures:GB 50010-2010[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
    [29] MA Y, CHE Y, GONG J X. Behavior of corrosion damaged circular reinforced concrete columns under cyclic loading[J]. Construction and Building Materials, 2012, 29:548-556.
    [30] 朱杰. 受腐蚀钢筋混凝土墩柱的性能退化研究[D]. 上海:上海交通大学, 2013. ZHU J. Degradation of capacity of the corroded reinforced concrete columns[D]. Shanghai:Shanghai Jiaotong University, 2013.(in Chinese)
    [31] YUAN W, GUO A X, YUAN W T, et al. Shaking table tests of coastal bridge piers with different levels of corrosion damage caused by chloride penetration[J]. Construction and Building Materials, 2018, 173:160-171.
    [32] VU N S, LI B. Seismic performance assessment of corroded reinforced concrete short columns[J]. Journal of Structural Engineering, 2018, 144(4):04018018.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谷音,李攀.近海盐雾区钢筋混凝土圆形截面构件承载力退化研究[J].土木与环境工程学报(中英文),2020,42(4):153-163. Gu Yin, Li Pan. Bearing capacity degradation of reinforced concrete circular members at coastal atmosphere zone[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2020,42(4):153-163.10.11835/j. issn.2096-6717.2020.036

复制
分享
文章指标
  • 点击次数:784
  • 下载次数: 814
  • HTML阅读次数: 713
  • 引用次数: 0
历史
  • 收稿日期:2019-10-14
  • 在线发布日期: 2020-08-10
文章二维码