基于变分渐近法的双周期梯形波纹板等效模型
CSTR:
作者:
中图分类号:

TU501;TB333

基金项目:

国家自然科学基金(51778088);重庆市自然科学基金(cstc2017jcyjBX00036)


Equivalent model of bi-periodic trapezoidal corrugated plate based on variational asymptotic method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    双周期梯形波纹板是沿两个平面方向均呈周期性梯形波纹变化的新型轻质结构,现阶段对其力学性能与结构参数之间关系的研究较少,限制了该结构的推广应用。针对该问题,以凸起为中心的典型代表单元单胞为研究对象,利用变分渐近法建立单胞等效刚度的数值计算模型。再通过均匀化技术将双周期梯形波纹板转换为具有相同刚度特性的正交异性板进行分析。基于该方法分别计算出不同结构参数下的等效刚度、宏观变形和屈曲模态,通过与三维有限元模拟结果对比验证等效模型的精确性。计算结果表明:由于形貌变化,双周期梯形波纹板的等效刚度较平板的拉伸刚度降低,弯曲刚度增加;随着凸起间距的增大和板高度的减小,波纹板的拉伸刚度逐渐增大,弯曲刚度逐渐降低;而随着板厚度和腰部长度的增加,弯曲刚度呈上升的趋势。构建模型适用于波纹周期远小于结构尺寸的情况,由于等效板模型的近似能量与原三维波纹板能量尽可能接近(通过对能量泛函变分主导项的渐近扩展分析加以保证),可用于计算不同材料波纹板等效弯矩和等效最大拉压应力等,能有效减少计算量和节省计算资源。

    Abstract:

    The bi-periodic trapezoidal corrugated plate is a new type of lightweight structure with periodic trapezoidal corrugated changes along two plane directions. At present, there is little research on the relationship between its mechanical properties and structural parameters, limiting the popularization and application of this structure. In this article, a numerical model of the represent element (or called unit cell) is established by using the variational asymptotic method to calculate the equivalent stiffness. Then, the bi-periodic trapezoidal corrugated plate is converted to orthotropic plate with the same stiffness characteristics by homogenization technology. Based on this method, the equivalent stiffness with different structural parameters, global deformation and buckling modes are calculated, and the accuracy of the equivalent model is verified by comparing with the three-dimensional finite element simulation results. The results show that the equivalent stiffness of the bi-periodic trapezoidal corrugated plate is lower than that of the plate due to the change of the shape, and the bending stiffness is increased. The tensile stiffness increase and the bending stiffness decrease with increasing interval length and decreasing plate height. While with the increase of plate thickness and web length, the bending stiffness shows an upward trend. The constructed model is suitable for the case that the period of corrugation is far less than the structure size. The approximate energy of the equivalent plate model is as close as that of the original three-dimensional corrugation plate, which is guaranteed by the asymptotic expansion analysis of the leading terms of energy functional. The equivalent plate model can be used to calculate the equivalent bending moment and the equivalent maximum tensile/compressive stress of corrugated plates with different material properties, which can effectively reduce the calculation amount and save the calculation resources.

    参考文献
    [1] ABED A M, ALGHOUL M A, SOPIAN K, et al. Design characteristics of corrugated trapezoidal plate heat exchangers using nanofluids[J]. Chemical Engineering and Processing:Process Intensification, 2015, 87(6):88-103.
    [2] PEREL D, LIBOVE C. Elastic buckling of infinitely long trapezoidally corrugated plates in shear[J]. Journal of Applied Mechanics, 1978, 45(3):579-582.
    [3] EMAMI F, MOFID M. On the hysteretic behavior of trapezoidally corrugated steel shear walls[J]. The Structural Design of Tall and Special Buildings, 2014, 23(2):94-104.
    [4] BAHREBAR M, KABIR M Z, ZIRAKIAN T, et al. Structural performance assessment of trapezoidally-corrugated and centrally-perforated steel plate shear walls[J]. Journal of Constructional Steel Research, 2016, 122(11):584-594.
    [5] SHON S, YOO M, LEE S. An experimental study on the shear hysteresis and energy dissipation of the steel frame with a trapezoidal-corrugated steel plate[J]. Materials, 2017, 10(3):261.
    [6] 王远, 臧勇, 管奔, 等. 基于单胞有限元的波纹板等效刚度特性[J]. 北京航空航天大学学报, 2018, 44(6):1230-1238. WANG Y, ZANG Y, GUAN B, et al. Equivalent stiffness property of dimpled sheet based on unit cell finite element[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6):1230-1238. (in Chinese)
    [7] XIA Y, FRISWELL M I, FLORES E I S. Equivalent models of corrugated panels[J]. International Journal of Solids and Structures, 2012, 49(13):1453-1462.
    [8] LI W, LI H X, LI G Q, et al. Numerical and experimental analysis of composite fouling in corrugated plate heat exchangers[J]. International Journal of Heat and Mass Transfer, 2013, 63:351-360.
    [9] FAIZAL M, AHMED M R. Experimental studies on a corrugated plate heat exchanger for small temperature difference applications[J]. Experimental Thermal and Fluid Science, 2012, 36(1):242-248.
    [10] BRIASSOULIS D. Equivalent orthotropic properties of corrugated sheets[J]. Computers & Structures, 1986, 23(2):129-138.
    [11] SAMANTA A, MUKHOPADHYAY M. Finite element static and dynamic analyses of folded plates[J]. Engineering Structures, 1999, 21(3):277-287.
    [12] YOKOZEKI T, TAKEDA S I, OGASAWARA T, et al. Mechanical properties of corrugated composites for candidate materials of flexible wing structures[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(10):1578-1586.
    [13] PENG L X, LIEW K M, KITIPORNCHAI S. Analysis of stiffened corrugated plates based on the FSDT via the mesh-free method[J]. International Journal of Mechanical Sciences, 2007, 49(3):364-378.
    [14] LIEW K M, PENG L X, KITIPORNCHAI S. Nonlinear analysis of corrugated plates using a FSDT and a meshfree method[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(21-24):2358-2376.
    [15] 张勇, 刘锡良, 张福海. 银河金属拱型波纹屋顶的静力稳定承载力试验研究[J]. 建筑结构学报, 1997, 18(6):46-54, 40. ZHANG Y, LIU X L, ZHANG F H. Experimental study on static stability bearing capacity of milky way arched corrugated metal roof[J]. Journal of Building Structures, 1997, 18(6):46-54, 40. (in Chinese)
    [16] 吴存利, 段世慧, 孙侠生. 复合材料波纹板刚度工程计算方法及其在结构分析中的应用[J]. 航空学报, 2008, 29(6):1570-1575. WU C L, DUAN S H, SUN X S. Technique for calculation of composite corrugated plate stiffness and its application in structure finite element analysis[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1570-1575. (in Chinese)
    [17] 高轩能, 王健. 槽型波纹板组结构的局部屈曲承载能力研究[J]. 南昌大学学报(工科版), 2004, 26(3):68-71, 93. GAO X N, WANG J. Study on local buckling of corrugated channel sections[J]. Journal of Nanchang University(Engineering & Technology), 2004, 26(3):68-71, 93. (in Chinese)
    [18] 钟轶峰, 周小平, 张亮亮. 压电圆柱棒基于变分渐近法的广义Timoshenko模型[J]. 工程力学, 2014, 31(10):14-20. ZHONG Y F, ZHOU X P, ZHANG L L. A new generalized Timoshenko model for piezoelectric cylindrical rods by using the variational asymptotic method[J]. Engineering Mechanics, 2014, 31(10):14-20. (in Chinese)
    [19] 钟轶峰, 刘森林, 陈约瑟, 等. 中厚度复合材料夹芯层板变分渐近精细模型[J]. 应用数学和力学, 2013, 34(7):687-696. ZHONG Y F, LIU S L, CHEN Y S, et al. Refined model for composite sandwich laminates of moderate thickness based on the variational asymptotic method[J]. Applied Mathematics and Mechanics, 2013, 34(7):687-696. (in Chinese)
    [20] 钟轶峰, 余文斌. 压电复合材料层合板的热压电弹性简化模型研究[J]. 工程力学, 2012, 29(6):314-319. ZHONG Y F, YU W B. Study on simplified thermopiezoelastic model for piezoelectric composite laminates[J]. Engineering Mechanics, 2012, 29(6):314-319. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邓兵,钟轶峰,席森彪,禹辽.基于变分渐近法的双周期梯形波纹板等效模型[J].土木与环境工程学报(中英文),2020,42(4):175-184. Deng Bing, Zhong Yifeng, Xi Senbiao, Yu Liao. Equivalent model of bi-periodic trapezoidal corrugated plate based on variational asymptotic method[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2020,42(4):175-184.10.11835/j. issn.2096-6717.2020.023

复制
分享
文章指标
  • 点击次数:668
  • 下载次数: 1213
  • HTML阅读次数: 636
  • 引用次数: 0
历史
  • 收稿日期:2019-11-24
  • 在线发布日期: 2020-08-10
文章二维码