渐近搜索算法在软土基坑基底抗隆起上限分析中的应用
CSTR:
作者:
中图分类号:

TU 432

基金项目:

重庆市建设科技计划(2019-0045);重庆市教委科学技术研究项目(KJZD-K201900102)


Application of progressive search algorithm in upper bound analysis of basal stability for braced excavations in soft clay
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    潜在破坏面的确定是软土基坑基底抗隆起上限分析的难点与重点。在传统的上限分析法中,破坏面仅假设与基坑开挖宽度有关。而采用渐进搜索算法确定破坏面,无需假设破坏面具体形状,通过多次迭代计算即可确定临界破坏面,且该算法已在边坡稳定与可靠度分析中成功应用。介绍了应用多块体上限法分析基坑抗隆起稳定性的基本步骤,并详细介绍了渐进搜索算法的流程,针对基坑抗隆起分析问题的特点,对渐进搜索算法中的初始破坏面生成、搜索边界、收敛准则等重新进行了设置;针对搜索过程中遇到的问题,给出了解决方法。通过实例分析检验渐近搜索算法的实际应用效果,并围绕算法中的初始搜索步长、破坏面结点个数、搜索次数等关键参数进行讨论,给出建议取值。案例分析表明,渐近搜索算法在软土基坑基底抗隆起上限分析中应用效果很好,且相比于其他的上限分析方法,渐近搜索算法计算简单,无需假设破坏面形状参数。

    Abstract:

    Determining the potential failure surface plays an important role in basal stability analysis of braced excavations in soft clay by upper bound method. For traditional upper bound method, it is assumed that failure surfaces are only related with excavation width. However, for progressive search method, the critical failure surfaces can be evaluated by multi-iterations without assuming detailed shape of failure surfaces. And this method was successfully applied to slope stability analysis. Firstly, this paper introduced the step of basal stability analysis of excavation via multi-block upper bound method. Secondly, this paper illustrated the framework of progressive search method. Considering the characteristic of basal stability analysis of excavation, the generation of initial failure surfaces, the search boundary and the convergence criteria are reset. And some solutions are proposed to deal with the problems during search process. Moreover, this paper verifies the performance of progressive search method by case studies, and proposes conclusions about search length, number of pointsat the failure surface and number of searches. At last, this paper concludes that progressive search method is applied in basal stability analysis successfully. And compared to other upper bound method, progressive search method without assuming detailed shape of surfaces is easier to calculate.

    参考文献
    [1] KARL T. Theoretical soil mechanics[M]. Hoboken, NJ, USA:John Wiley & Sons, Inc., 1943.
    [2] BJERRUM L, EIDE O. Stability of strutted excavations in clay[J].Géotechnique, 1956, 6(1):32-47.
    [3] GOH A T C. Estimating basal-heave stability for braced excavations in soft clay[J]. Journal of Geotechnical Engineering, 1994, 120(8):1430-1436.
    [4] ZHANG W G,ZHANG R H, WU C Z, et al. Assessment of basal heave stability for braced excavations in anisotropic clay using extreme gradient boosting and random forest regression[J/OL]. Underground Space, 2020, https://doi.org/10.1016/j.undsp.2020.03.001.
    [5] MATSUI T, SAN K C. Finite element slope stability analysis by shear strength reduction technique[J]. Soils and Foundations, 1992, 32(1):59-70.
    [6] FAHEEM H, CAI F, UGAI K, et al. Two-dimensional base stability of excavations in soft soils using FEM[J]. Computers and Geotechnics, 2003, 30(2):141-163.
    [7] 秦会来, 陈祖煜, 刘立鹏. 基于上限理论的软土基坑抗隆起稳定分析方法[J]. 岩土工程学报, 2012, 34(9):1611-1619. QIN H L, CHEN Z Y, LIU L P. Basal stability analysis for excavations in soft clay based on upper bound method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9):1611-1619.(in Chinese)
    [8] 唐震, 黄茂松, 袁聚云. 基于连续速度场的基坑抗隆起稳定性上限分析[J]. 岩土力学, 2017, 38(3):833-839. TANG Z, HUANG M S, YUAN J Y, et al. Upper bound analysis of basal stability of excavations based on continuous velocity fields[J]. Rock and Soil Mechanics, 2017, 38(3):833-839.(in Chinese)
    [9] DRUCKER D C, PRAGER W, GREENBERG H J. Extended limit design theorems for continuous media[J]. Quarterly of Applied Mathematics, 1952, 9(4):381-389.
    [10] CHEN W F. Limit analysis and soil plasticity[M]. Amsterdam:Elsevier Science, 1975.
    [11] GRECO V R. Efficient Monte Carlo technique for locating critical slip surface[J]. Journal of Geotechnical Engineering, 1996, 122(7):517-525.
    [12] HAN C Y, CHEN J J, XIA X H, et al. Three-dimensional stability analysis of anisotropic and non-homogeneous slopes using limit analysis[J]. Journal of Central South University, 2014, 21(3):1142-1147.
    [13] GAO Y F, YE M, ZHANG F. Three-dimensional analysis of slopes reinforced with piles[J]. Journal of Central South University, 2015, 22(6):2322-2327.
    [14] 秦会来, 黄茂松, 王玉杰. 地基承载力上限分析中的Monte Carlo搜索技术[J]. 岩土力学, 2010, 31(10):3145-3150. QIN H L, HUANG M S, WANG Y J. Application of Monte Carlo search technique to bearing capacity calculations by upper bound method[J]. Rock and Soil Mechanics, 2010, 31(10):3145-3150.(in Chinese)
    [15] 秦会来, 黄茂松. 双层地基极限承载力的极限分析上限法[J]. 岩土工程学报, 2008, 30(4):611-616. QIN H L, HUANG M S. Upper-bound method for calculating bearing capacity of strip footings on two-layer soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4):611-616.(in Chinese)
    [16] UKRITCHON B, WHITTLE A J, SLOAN S W. Undrained stability of braced excavations in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(8):738-755.
    [17] 邹广电. 基于一个上限分析方法的深基坑抗隆起稳定分析[J]. 岩土力学, 2004, 25(12):1873-1878. ZOU G D. Analysis of stability against upheaval of deep excavation by an upper limit method[J]. Rock and Soil Mechanics, 2004, 25(12):1873-1878.(in Chinese)
    [18] GOH A T C, ZHANG W G, WONG K S. Deterministic and reliability analysis of basal heave stability for excavation in spatial variable soils[J]. Computers and Geotechnics, 2019, 108:152-160.
    [19] 陈祖煜. 土质边坡稳定分析:原理·方法·程序[M]. 北京:中国水利水电出版社, 2003. CHEN Z Y. Soil slope stability analysis[M]. Beijing:China Water Power Press, 2003. (in Chinese)
    [20] 张鲁渝, 张建民. 基于Monte Carlo技术的临界滑面搜索算法的实现及改进[J]. 岩土工程学报, 2006, 28(7):857-862. ZHANG L Y, ZHANG J M. Extended algorithm using Monte Carlo techniques for searching general critical slip surface in slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7):857-862.(inChinese)
    [21] 张鲁渝, 张建民. 基于滑面段旋转的Monte Carlo搜索技术及改进(Ⅰ):转角大小随机[J]. 岩土力学, 2006, 27(11):1902-1908. ZHANG L Y, ZHANG J M. Modified Monte Carlo techniques by rotating slip segments for searching general critical slip surface(Ⅰ):Random angle of rotation[J]. Rock and Soil Mechanics, 2006, 27(11):1902-1908.(in Chinese)
    [22] 张鲁渝, 张建民. 基于滑面段旋转的Monte Carlo搜索技术及改进(Ⅱ):常值转角[J]. 岩土力学, 2006, 27(12):2197-2202. ZHANG L Y, ZHANG J M. The extended Monte Carlo techniques by rotating slip segments for searching general critical slip surface (Ⅱ):Constant angle of rotation[J]. Rock and Soil Mechanics, 2006, 27(12):2197-2202.(in Chinese)
    [23] 黄茂松, 杜佐龙, 宋春霞. 支护结构入土深度对黏土基坑抗隆起稳定的影响分析[J]. 岩土工程学报, 2011, 33(7):1097-1103. HUANG M S, DU Z L, SONG C X. Effects of inserted depth of wall penetration on basal stability of foundation pits in clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7):1097-1103.(in Chinese)
    [24] GOH A T C, ZHANG F, ZHANG W G, et al. A simple estimation model for 3D braced excavation wall deflection[J]. Computers and Geotechnics, 2017, 83:106-113.
    [25] CHANG M F. Basal stability analysis of braced cuts in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(3):276-279.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

洪利,仉文岗.渐近搜索算法在软土基坑基底抗隆起上限分析中的应用[J].土木与环境工程学报(中英文),2020,42(6):46-53. Hong Li, Zhang Wengang. Application of progressive search algorithm in upper bound analysis of basal stability for braced excavations in soft clay[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2020,42(6):46-53.10.11835/j. issn.2096-6717.2020.093

复制
分享
文章指标
  • 点击次数:383
  • 下载次数: 1040
  • HTML阅读次数: 570
  • 引用次数: 0
历史
  • 收稿日期:2020-04-23
  • 在线发布日期: 2020-11-26
  • 出版日期: 2020-12-31
文章二维码