Abstract:In order to explore the influence of different steel plate strengthening methods on the bearing capacity of corroded RC beams, the strengthening effect of different strengthening schemes is explored. The characteristics in the bearing capacity, deformation, failure mode and ductility of corroded RC beams strengthening by steel plate with flexural strengthening schemes, shear strengthening scheme, and flexure-shear combination strengthening scheme are compared, respectively, and the advantages and disadvantages of different strengthening schemes are analyzed. The results show that for the flexure-strengthened corroded beam which steel plate thickness are 3 mm, 4 mm and 5 mm, respectively, the ultimate bearing capacity increased by 7~18 kN with 1 mm increases of steel plate thickness. The effect of combined strengthening is most significant, and the ultimate bearing capacity increased by 107.7% compared with corroded beams. Combined strengthened corroded beams have the strongest deformation resistance, the following is flexure-strengthened corroded beams, and the increases of steel plate thickness has a positive effect on the deformation resistance of flexure-strengthened corroded beam. The combined strengthening scheme is more effective in improving the ductility of corroded beam than the other two strengthening schemes, the ductility of which is improved by 320.4% compared with corroded beam, followed by shear strengthened corroded beams. The ductility of flexure-strengthened corroded beam is smaller than other two kinds of strengthened beams, and it increases in the begining and then decreases with the increases of steel plate thickness. The deformation resistance and ductility should be considered comprehensively when evaluating the strengthening effect of flexural and shear-strengthened corroded beams.