增湿条件下膨胀土隧道围岩的稳定性
CSTR:
作者:
中图分类号:

U451

基金项目:

国家自然科学基金(51768022、51978265);江西省主要学科学术和技术带头人培养计划(20194BCJ22009);江西省优势科技创新团队建设计划(20181BCB24011)


Stability of expansive soil tunnel surrounding rock under humidity condition
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    增湿条件下,膨胀土的强度会降低并产生膨胀力,在两者的共同作用下,膨胀土隧道围岩稳定性会严重降低,有必要研究增湿条件下膨胀土隧道围岩的变形和衬砌受力。采用室内试验和数值模拟的方法对膨胀土隧道围岩稳定性进行研究,对不同含水率的重塑膨胀土进行剪切试验,得出摩擦角、黏聚力与含水率的拟合关系式,运用ABAQUS有限元软件对膨胀土隧道开挖过程进行仿真分析,并利用温度场模块模拟隧道围岩增湿膨胀,得出隧道增湿前后应力与位移的变化规律,同时设计正交试验,分析各因素对膨胀土浅埋隧道稳定性的影响。结果表明:围岩增湿之后,围岩拱腰处的应力值增加明显,拱顶和拱底处应力值减小;衬砌的拱底处纵向位移值增加,拱顶处纵向位移值减小。通过设计正交试验,采用极差和方差分析得到对膨胀土浅埋隧道围岩稳定性影响最大的因素为增湿强度,其次为覆跨比、膨胀厚度和膨胀系数。

    Abstract:

    Under the humidification condition, the strength parameters of the expansive soil will decrease and the expansion force will be generated. Under the combined action of the two, the stability of the surrounding rock of the expansive soil tunnel will be seriously reduced. Therefore, it is necessary to study the deformation and lining stress of the surrounding rock of expansive soil tunnel under the condition of humidification. In this paper, laboratory tests and numerical simulations are used to study the stability of the surrounding rock of the expansive soil tunnel. First, the shear experiment is carried out on the remolded expansive soil with different water contents, and the fitting relationship between friction angle and cohesion and water content is obtained. Then, the ABAQUS finite element software is used to simulate and analyze the excavation process of tunneling in the expansive soil.The temperature field module is used to simulate the humidification and expansion of the surrounding rock of the tunnel, and the stress and displacement of the tunnel before and after swelling were obtained. At the same time, the orthogonal experiment was designed to analyze the influence of various factors on the stability of the shallow buried tunnel in the expansive soil. Results show that after humidification, the stress value at the arch waist of the surrounding rock increases significantly, the stress value at the vault and arch bottom decreases.The longitudinal displacement value at the lining arch bottom increases, and the longitudinal displacement value at the arch top decreases. By designing orthogonal experiments and using range and variance analysis, the most influential factor on stability of the surrounding rock of the expansive soil shallow tunnel is the humidification strength, followed by the over-span ratio, the swelling thickness and the swelling coefficient.

    参考文献
    [1] 廖世文. 膨胀土与铁路工程[M]. 北京:中国铁道出版社, 1984. LIAO S W. Expansive soil and railway engineering[M]. Beijing:China Railway Publishing House, 1984. (in Chinese)
    [2] 张万志, 徐帮树, 曾仲毅, 等. 降雨入渗下膨胀性黄土隧道围岩破坏演化[J]. 东南大学学报(自然科学版), 2018, 48(4):736-744. ZHANG W Z, XU B S, ZENG Z Y, et al. Research on failure evolution process of surrounding rock of swelling loess tunnel under rainfall infiltration[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(4):736-744. (in Chinese)
    [3] 缪协兴, 杨成永, 陈至达. 膨胀岩体中的湿度应力场理论[J]. 岩土力学, 1993, 14(4):49-55. MIAO X X, YANG C Y, CHEN Z D. Humidity stress field theory in swelling rock mass[J]. Rock and Soil Mechanics, 1993, 14(4):49-55. (in Chinese)
    [4] 缪协兴. 用湿度应力场理论解圆形硐室遇水作用问题[J]. 岩土工程学报, 1995, 17(5):86-90. MIAO X X. Using the theory of humidity stress field to solve the problem of water action of circular chamber[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5):86-90. (in Chinese)
    [5] 卢爱红. 膨胀岩体的湿度应力场理论及数值模拟[D]. 北京:中国矿业大学, 2002. LU A H. Humidity stress field theory and numerical simulation of swelling rock mass[D].Beijing:China University of Mining and Technology, 2002. (in Chinese)
    [6] ANAGNOSTOU G. Seepage flow around tunnels in swelling rock[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(10):705-724.
    [7] NG C W W, ZHAN L T, BAO C G, et al. Performance of an unsaturated expansive soil slope subjected to artificial rainfall infiltration[J]. Geotechnique, 2003, 53(2):143-157.
    [8] WITTKE W, WITTKE M. Design construction and supervision of tunnels in swelling rock[C]//1st ITA World Tunnelling Congress, 2005:1173-1178.
    [9] 王明年, 舒东利, 于丽, 等. 膨胀力对合肥市轨道交通浅埋暗挖隧道的影响研究[J]. 路基工程, 2017(1):204-207. WANG M N, SHU D L, YU L, et al. Research on effect of expansive force on shallow-buried tunnel of Hefei rail transit[J]. Subgrade Engineering, 2017(1):204-207. (in Chinese)
    [10] 周坤. 膨胀土隧道衬砌膨胀力数值模拟研究[D]. 成都:西南交通大学, 2007. ZHOU K. Numerical simulation study on expansive force of lining for tunnel in expansive soil[D]. Chengdu:Southwest Jiaotong University, 2007. (in Chinese)
    [11] HOTINEANU A, BOUASKER M, ALDAOOD A, et al. Effect of freeze-thaw cycling on the mechanical properties of lime-stabilized expansive clays[J]. Cold Regions Science and Technology, 2015, 119:151-157.
    [12] 曾仲毅, 徐帮树, 胡世权, 等. 增湿条件下膨胀土隧道衬砌破坏数值分析[J]. 岩土力学, 2014, 35(3):871-880. ZENG Z Y, XU B S, HU S Q, et al. Numerical analysis of tunnel liner failure mechanism in expansive soil considering water-increased state[J]. Rock and Soil Mechanics, 2014, 35(3):871-880. (in Chinese)
    [13] 陈尤. 考虑裂隙影响的膨胀土路堑边坡稳定性及支护数值分析[D]. 长沙:长沙理工大学, 2012. CHEN Y. Numerical analysis of expansive soil slope stability and support considering cracks[D]. Changsha:Changsha University of Science & Technology, 2012. (in Chinese)
    [14] 郑俊杰, 郭震山, 崔岚, 等. 考虑非饱和渗流与增湿膨胀下的膨胀土隧道稳定性分析[J]. 岩土力学, 2017, 38(11):3271-3277. ZHENG J J, GUO Z S, CUI L, et al. Stability analysis of expansive soil tunnel considering unsaturated seepage and moistening swelling deformation[J]. Rock and Soil Mechanics, 2017, 38(11):3271-3277. (in Chinese)
    [15] 杨和平, 张锐, 郑健龙. 非饱和膨胀土总强度指标随饱和度变化规律[J]. 土木工程学报, 2006, 39(4):58-62. YANG H P, ZHANG R, ZHENG J L. Variation of the total shear strength of unsaturated expansive soils with degree of saturation[J]. China Civil Engineering Journal, 2006, 39(4):58-62. (in Chinese)
    [16] 曾仲毅. 降雨入渗下膨胀性黄土隧道围岩力学特性及稳定性分析[D]. 济南:山东大学, 2014. ZENG Z Y. An analysis of mechanical characteristics and stability on swelling loess tunnel surrounding rocks under rainfall infiltration[D]. Jinan:Shandong University, 2014. (in Chinese)
    [17] 徐仲安, 王天保, 李常英, 等. 正交试验设计法简介[J]. 科技情报开发与经济, 2002(5):148-150. XU Z A, WANG T B, LI C Y, et al.Brief introduction to the orthogonal test design[J]. Sci/Tech Information Development & Economy, 2002(5):148-150. (in Chinese)
    [18] 地铁设计规范:GB 50157-2013[S]. 北京:中国建筑工业出版社, 2014. Code for design of metro:GB 50157-2013[S]. Beijing:China Architecture & Building Press, 2014. (in Chinese)
    [19] 吴科亮, 丁春林. 基于正交试验法的边坡稳定因素敏感性分析[J]. 华东交通大学学报, 2016, 33(2):114-120. WU K L, DING C L. Sensitivity analysis on slope stability factor based on orthogonal test[J]. Journal of East China Jiaotong University, 2016, 33(2):114-120. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈纤,吴宝游,罗文俊,徐鑫洋.增湿条件下膨胀土隧道围岩的稳定性[J].土木与环境工程学报(中英文),2021,43(2):26-34. CHEN Xian, WU Baoyou, LUO Wenjun, XU Xinyang. Stability of expansive soil tunnel surrounding rock under humidity condition[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2021,43(2):26-34.10.11835/j. issn.2096-6717.2020.149

复制
分享
文章指标
  • 点击次数:440
  • 下载次数: 1137
  • HTML阅读次数: 496
  • 引用次数: 0
历史
  • 收稿日期:2020-07-01
  • 在线发布日期: 2021-03-06
文章二维码