多胺螯合纳米纤维高效去除Pb(Ⅱ)的特性与机制
CSTR:
作者:
中图分类号:

TU375.4

基金项目:

国家自然科学基金(51378253);江苏省博士后科研资助计划(2020Z299);中国博士后科学基金(2020M671443)


Characteristics and mechanism of polyamine chelating nanofiber for high-efficiency removal of Pb(Ⅱ)
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    优选二乙烯三胺(DETA)作为胺化试剂对聚丙烯腈(PAN)纳米纤维进行改性,制备多胺纳米纤维吸附剂D-PAN,探究对Pb(Ⅱ)的吸附特性与机制。对D-PAN进行SEM、BET、FTIR和XPS表征,并通过试验研究溶液初始pH值、接触时间、温度、无机盐等因素对D-PAN吸附过程的影响。结果表明:多胺基团被成功引入D-PAN的三维网络中,多孔道结构有利于改善D-PAN对Pb(Ⅱ)的吸附性能。pH值为5.0时,D-PAN对Pb(Ⅱ)的静态吸附性能最优,由Langmuir模型拟合获得的最大吸附容量高达1.73 mmol/g,准一级动力学速率常数高达0.06 min-1。含盐体系中D-PAN对Pb(Ⅱ)的吸附量可提高近1倍,“盐促”效应显著。结合XPS和DFT结果分析,多胺基团中N原子可与Pb(Ⅱ)形成双齿和三齿螯合物。多次再生利用性能显示,D-PAN结构性能具有优良的稳定性。D-PAN具有吸附快、容量大、易再生等优点,具有广阔应用前景。

    Abstract:

    In order to explore the adsorption characteristics of Pb (Ⅱ) and mechanism, polyacrylonitrile was selected as the matrix to be chemically modified with diethylenetriamine (DETA),preferred as an amination reagent,and a kind of polyamine chelating nanofiber (D-PAN) has been successfully prepared. The physical and chemical structure analysis by SEM, BET,FTIR and XPS was performed, and the effects of initial pH value, contact time, temperature, inorganic salt and other factors on the adsorption process of D-PAN were studied.The results show that: amine groups was successfully introduced into three-dimensional network of D-PAN, and multi channel structure is conducive to improve the adsorption properties of D-PAN for Pb (Ⅱ). It had the best static adsorption property at pH 5.0. The maximum adsorption capacity was 1.73 mmol/g obtained by fitting with Langmuir model, and the quasi-first-order kinetic rate constant is up to 0.06 min-1. Moreover, D-PAN had a significant “salt-promoting” effect, and the adsorption amount of Pb (Ⅱ) in the salt-containing system could be nearly doubled.Combining the results of XPS and DFT, it was found that Pb(Ⅱ) could be removed by chelating with N atoms in polyamine groups to form bidentate and tridentate complexes.Furthermore, D-PAN exhibited excellent structural stability after multiple regeneration. In summary, D-PAN has the advantages of fast adsorption, large capacity and easy regeneration, and has broad application prospects.

    参考文献
    [1] SUN Y J, ZHOU S B, PAN S Y, et al. Performance evaluation and optimization of flocculation process for removing heavy metal[J]. Chemical Engineering Journal, 2020, 385:123911.
    [2] 韩颖. "血铅超标"事件追踪[J]. 劳动保护, 2011(4):34-36. HAN Y. The event tracking of "blood lead excess"[J]. Labour Protection, 2011(4):34-36. (in Chinese)
    [3] 吴龙贵. "吃铅笔也超铅"可怕在哪[J]. 环境教育, 2014(7):30. WU L G. The point in the phenomenon that eating pencils leads to excessive Pb[J]. Environmental Education, 2014(7):30. (in Chinese)
    [4] 叶伟雄, 叶艺娟, 黄振波, 等. 紫金县临江开发区1297名学生血铅检测结果分析[J]. 海峡预防医学杂志, 2013, 19(3):29-30. YE W X, YE Y J, HUANG Z B,et al. Analysis of blood lead test results of 1297 students in Linjiang Development Zone, Zijin County[J]. Strait Journal of Preventive Medicine, 2013, 19(3):29-30. (in Chinese)
    [5] FU J J, ZHANG A Q, WANG T, et al. Influence of E-waste dismantling and its regulations:temporal trend, spatial distribution of heavy metals in rice grains, and its potential health risk[J]. Environmental Science & Technology, 2013, 47(13):7437-7445.
    [6] TURNER A. Heavy metals in the glass and enamels of consumer container bottles[J]. Environmental Science & Technology, 2019, 53(14):8398-8404.
    [7] 辛玉婷, 花月, 沈小帅, 等. 铅蓄电池行业大气污染物现行排放标准在江苏省的适用性分析[J]. 环境科技, 2016, 29(5):73-77. XIN Y T, HUA Y, SHEN X S, et al. The applicability of air pollutants eemission standards for lead battery industry in Jiangsu Province[J]. Environmental Science and Technology, 2016, 29(5):73-77. (in Chinese)
    [8] 王宗爽, 徐舒, 安广楠, 等. 铅大气污染物环境保护标准限值研究[J]. 环境科学学报, 2019, 39(9):3163-3170. WANG Z S, XU S, AN G N, et al. Research on the lead limit values of environmental protection standards[J]. Acta Scientiae Circumstantiae, 2019, 39(9):3163-3170. (in Chinese)
    [9] LUO J M, SUN M, RITT C L, et al. Tuning Pb(Ⅱ) adsorption from aqueous solutions on ultrathin iron oxychloride (FeOCl) nanosheets[J]. Environmental Science & Technology, 2019, 53(4):2075-2085.
    [10] SIRVIÖ J A, VISANKO M. Lignin-rich sulfated wood nanofibers as high-performing adsorbents for the removal of lead and copper from water[J]. Journal of Hazardous Materials, 2020, 383:121174.
    [11] NIU Z R, FENG W L, HUANG H, et al. Green synthesis of a novel Mn-Zn ferrite/biochar composite from waste batteries and pine sawdust for Pb2+ removal[J]. Chemosphere, 2020, 252:126529.
    [12] 张雪彦, 金灿, 刘贵锋, 等. 希夫碱型木质素基吸附材料的制备及其对Pb2+吸附性能研究[J]. 离子交换与吸附, 2017, 33(5):403-415. ZHANG X Y, JIN C, LIU G F, et al. Preparation of schiff base-modified-lignin adsorbent and its adsorption performance of Pb2+[J]. Ion Exchange and Adsorption, 2017, 33(5):403-415. (in Chinese)
    [13] 兰舫, 牛春梅, 李绍英, 等. 交联羧甲基罗望子胶对Pb2+的吸附研究[J]. 离子交换与吸附, 2014, 30(3):242-249. LAN F, NIU C M, LI S Y, et al. Adsorption performance of Pb2+ by crosslinked carboxymethyl tamarind[J]. Ion Exchange and Adsorption, 2014, 30(3):242-249. (in Chinese)
    [14] MA L J, WANG Q, ISLAM S M, et al. Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42- ion[J]. Journal of the American Chemical Society, 2016, 138(8):2858-2866.
    [15] XUE J J, WU T, DAI Y Q, et al. Electrospinning and electrospun nanofibers:methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8):5298-5415.
    [16] QIU J L, FAN P, YUE C L, et al. Multi-networked nanofibrous aerogel supported by heterojunction photocatalysts with excellent dispersion and stability for photocatalysis[J]. Journal of Materials Chemistry A, 2019, 7(12):7053-7064.
    [17] DENG S, LIU X H, LIAO J B, et al. PEI modified multiwalled carbon nanotube as a novel additive in PAN nanofiber membrane for enhanced removal of heavy metal ions[J]. Chemical Engineering Journal, 2019, 375:122086.
    [18] WANG G, WANG J R, ZHANG H, et al. Functional PAN-based monoliths with hierarchical structure for heavy metal removal[J]. Chemical Engineering Journal, 2017, 313:1607-1614.
    [19] 徐超, 刘福强, 巢路, 等. 新型多胺类螯合树脂的设计、制备及其对重金属离子吸附特性的研究[J]. 离子交换与吸附, 2013, 29(6):481-495. XU C, LIU F Q, CHAO L, et al. Synthesis of polyamine chelating resins and adsorption properties toward heavy metal ions from aqueous media[J]. Ion Exchange and Adsorption, 2013, 29(6):481-495. (in Chinese)
    [20] ZHOU H, ZHU H X, XUE F, et al. Cellulose-based amphoteric adsorbent for the complete removal of low-level heavy metal ions via a specialization and cooperation mechanism[J]. Chemical Engineering Journal, 2020, 385:123879.
    [21] ZOU L Z, SHAO P H, ZHANG K, et al. Tannic acid-based adsorbent with superior selectivity for lead(Ⅱ) capture:Adsorption site and selective mechanism[J]. Chemical Engineering Journal, 2019, 364:160-166.
    [22] XU X, ZHANG H J, AO J X, et al. 3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater[J]. Energy & Environmental Science, 2019, 12(6):1979-1988.
    [23] NIE R F, MIAO M, DU W C, et al. Selective hydrogenation of C=C bond over N-doped reduced graphene oxides supported Pd catalyst[J]. Applied Catalysis B:Environmental, 2016, 180:607-613.
    [24] ALMASIAN A, GIAHI M, CHIZARI FARD G, et al. Removal of heavy metal ions by modified PAN/PANI-nylon core-shell nanofibers membrane:Filtration performance, antifouling and regeneration behavior[J]. Chemical Engineering Journal, 2018, 351:1166-1178.
    [25] HONG G S, LI X, SHEN L D, et al. High recovery of lead ions from aminated polyacrylonitrile nanofibrous affinity membranes with micro/nano structure[J]. Journal of Hazardous Materials, 2015, 295:161-169.
    [26] ZIMMERMANN A C, MECAB A, FAGUNDES T, et al. Adsorption of Cr(VI) using Fe-crosslinked chitosan complex (Ch-Fe)[J]. Journal of Hazardous Materials, 2010, 179(1/2/3):192-196.
    [27] CHEN C, ZHANG M, GUAN Q X, et al. Kinetic and thermodynamic studies on the adsorption of xylenol orange onto MIL-101(Cr)[J]. Chemical Engineering Journal, 2012, 183:60-67.
    [28] HUI B, ZHANG Y, YE L. Preparation of PVA hydrogel beads and adsorption mechanism for advanced phosphate removal[J]. Chemical Engineering Journal, 2014, 235:207-214.
    [29] SAEED K, HAIDER S, OH T J, et al. Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime)nanofibers and their applications to metal ions adsorption[J]. Journal of Membrane Science, 2008, 322(2):400-405.
    [30] ZOU M Y, ZHANG J D, CHEN J W, et al. Simulating adsorption of organic pollutants on finite (8, 0) single-walled carbon nanotubes in water[J]. Environmental Science & Technology, 2012, 46(16):8887-8894.
    [31] LI J, ZHANG S W, CHEN C L, et al. Removal of Cu(Ⅱ) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles[J]. ACS Applied Materials & Interfaces, 2012, 4(9):4991-5000.
    [32] KOSA S A, AL-ZHRANI G, ABDEL SALAM M. Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline[J]. Chemical Engineering Journal, 2012, 181/182:159-168.
    [33] HU R, WANG X K, DAI S Y, et al. Application of graphitic carbon nitride for the removal of Pb(Ⅱ) and aniline from aqueous solutions[J]. Chemical Engineering Journal, 2015, 260:469-477.
    [34] KUMAR P A, RAY M, CHAKRABORTY S. Adsorption behaviour of trivalent chromium on amine-based polymer aniline formaldehyde condensate[J]. Chemical Engineering Journal, 2009, 149(1/2/3):340-347.
    [35] BRADL H B. Adsorption of heavy metal ions on soils and soils constituents[J]. Journal of Colloid and Interface Science, 2004, 277(1):1-18.
    [36] LIU W J, ZENG F X, JIANG H, et al. Adsorption of lead (Pb) from aqueous solution with Typha angustifolia biomass modified by SOCl2 activated EDTA[J]. Chemical Engineering Journal, 2011, 170(1):21-28.
    [37] ZHU C Q, LIU F Q, XU C, et al. Enhanced removal of Cu(Ⅱ) and Ni(Ⅱ) from saline solution by novel dual-primary-amine chelating resin based on anion-synergism[J]. Journal of Hazardous Materials, 2015, 287:234-242.
    [38] ZHU S, ASIM KHAN M, WANG F Y, et al. Rapid removal of toxic metals Cu2+ and Pb2+ by amino trimethylene phosphonic acid intercalated layered double hydroxide:A combined experimental and DFT study[J]. Chemical Engineering Journal, 2020, 392:123711.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

范佩,邱金丽,于伟华,李杰,刘福强.多胺螯合纳米纤维高效去除Pb(Ⅱ)的特性与机制[J].土木与环境工程学报(中英文),2021,43(2):182-189. FAN Pei, QIU Jinli, YU Weihua, LI Jie, LIU Fuqiang. Characteristics and mechanism of polyamine chelating nanofiber for high-efficiency removal of Pb(Ⅱ)[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2021,43(2):182-189.10.11835/j. issn.2096-6717.2020.159

复制
分享
文章指标
  • 点击次数:757
  • 下载次数: 867
  • HTML阅读次数: 644
  • 引用次数: 0
历史
  • 收稿日期:2020-09-07
  • 在线发布日期: 2021-03-06
文章二维码