老化与偏心受压下板式橡胶支座抗震性能拟静力试验研究
CSTR:
作者:
基金项目:

国家重点研发计划(2017YFE0103000);天津市交通运输科技发展计划(2018-35);河北省交通运输厅科技项目(TH-201916)


Pseudo static test of seismic performance of rubber bearing plate under aging and eccentric compression
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    板式橡胶支座的老化和偏压甚至脱空对桥梁抗震安全至关重要。将板式橡胶支座进行室内老化试验并测得弹性模量,按老化程度和轴压偏心大小共分16个工况,采用拟静力试验对比分析了热老化、偏压脱空及其耦合下支座的抗震性能指标及变化规律。结果发现:偏心受压下支座滞回曲线较为狭长,滞回曲线面积和等效阻尼比减小,水平等效刚度增大;老化后的支座剪切变形量缩减,在给定的位移幅值下,因滑移量占比加大,滞回曲线更为饱满,对应的等效阻尼比增大;老化和偏心耦合状态下的滞回曲线斜率更为平缓,支座耗能能力明显削弱;位于梁端或长期处于偏压状态的普通板式橡胶支座在地震中存在因单向累计滑移过大而脱落的风险。桥梁维护中应对支座底面采取限位措施,并对偏心受压严重的支座进行及时调整。

    Abstract:

    The aging eccentric compression, and even void of plate rubber bearings are very important for the seismic safety of bridges. The elastic modulus of plate rubber bearing was measured by indoor aging test. According to the degree of aging and eccentric compression the quasi-static test is divided into 16 cases, and the seismic performance indexes and change rules of the bearings under thermal aging, eccentric pressure and coupling are compared and analyzed. The results show that the hysteresis curve of the bearings under eccentric compression is relatively narrow. The area and equivalent damping ratio of the hysteresis curve decrease, and the horizontal equivalent stiffness of bearing increases. After aging, the shear deformation of the bearings decreases, the hysteresis curve is fuller with the increase of slip ratio for the given displacement amplitude, and the corresponding equivalent damping ratio increases. Under the condition of aging and eccentric compression, the slope of hysteresis curve is more gentle, and the energy dissipation capacity of bearing is obviously weakened. It is found that the beam end or the common plate rubber bearing that is under eccentric compression for a long time has the risk of falling off due to the excessive unidirectional accumulative slip in earthquake. It is suggested that in bridge maintenance, a limit device should be set on the underside of the bearing and timely adjust the bearing with severe eccentric compression.

    参考文献
    [1] 贺存哲, 薛刚. 板式橡胶支座抗震性能研究综述[J]. 江西建材, 2019(5):7-9. HE C Z, XUE G. An overview of research on seismic performance of plate rubber bearings[J]. Jiangxi Building Materials, 2019(5):7-9.(in Chinese)
    [2] 范立础, 袁万城. 桥梁橡胶支座减、隔震性能研究[J]. 同济大学学报, 1989, 17(4):447-455. FAN L C, YUAN W C. Seismic isolation and energy absorption properties of elastomeric pad bearing for bridges[J]. Journal of Tongji University, 1989, 17(4):447-455.(in Chinese)
    [3] 范立础, 聂利英, 李建中. 地震作用下板式橡胶支座滑动的动力性能分析[J]. 中国公路学报, 2003, 16(4):30-35. FAN L C, NIE L Y, LI J Z. Dynamic characteristic analysis of laminated rubber bearing sliding under earthquake[J]. China Journal of Highway and Transport, 2003, 16(4):30-35.(in Chinese)
    [4] 王东升, 冯启民. 活动支座摩擦力对简支梁桥地震反应的影响[J]. 地震工程与工程振动, 1998, 18(4):30-39. WANG D S, FENG Q M. Effects of frictional force at movable supports on earthquake response of simply supported reinforced concrete bridges[J]. Earthquake Engineering and Engineering Vibration, 1998, 18(4):30-39.(in Chinese)
    [5] 范立础, 李建中. 汶川桥梁震害分析与抗震设计对策[J]. 公路, 2009, 54(5):122-128. FAN L C, LI J Z. Earthquake damage analysis and seismic design countermeasure of Wenchuan bridge[J]. Highway, 2009, 54(5):122-128.(in Chinese)
    [6] 李冲, 王克海, 李悦, 等. 板式橡胶支座摩擦滑移抗震性能试验研究[J]. 东南大学学报(自然科学版), 2014, 44(1):162-167. LI C, WANG K H, LI Y, et al. Experimental study on seismic performance of laminated rubber bearings with friction slipping[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(1):162-167.(in Chinese)
    [7] 李涵, 周应新, 钱正富, 等. 山区公路桥梁高性能板式减震橡胶支座振动台试验[J]. 同济大学学报(自然科学版), 2019, 47(9):1244-1251. LI H, ZHOU Y X, QIAN Z F, et al. Shaking table tests on high-performance isolation rubber bearing isolated highway bridge in mountainous area[J]. Journal of Tongji University (Natural Science), 2019, 47(9):1244-1251.(in Chinese)
    [8] 鲁小罗, 徐略勤, 李钟雄, 等. 典型连续梁桥考虑板式橡胶支座滑移的抗震性能对比研究[J]. 结构工程师, 2019, 35(1):131-139. LU X L, XU L Q, LI Z X, et al. Comparative study on the seismic performance of typical continuous bridges considering the sliding effects of laminated rubber bearings[J]. Structural Engineers, 2019, 35(1):131-139.(in Chinese)
    [9] KELLY J M, KONSTANTINIDIS D A. Mechanics of rubber bearing for seismic and vibration isolation[M]. John Wiley & Sons Ltd., 2011:178-184.
    [10] FILIPOV E T, HAJJAR J F, STEELMAN J S, et al. Computational analyses of quasi-isolated bridges with fusing bearing components[C]//Proceedings of the ASCE/SEI Structures Congress, Reston, VA, USA, 2011:276-288.
    [11] STEELMAN J S, FAHNESTOCK L A, LA FAVE J M, et al. Seismic response of bearings for quasi-isolated bridges testing and components modeling In ASCE Structures Congress[M].2011: 164-178.
    [12] 刘利. 在役公路桥梁板式橡胶支座病害分析及对策研究[D]. 北京: 中国铁道科学研究院, 2012. LIU L. Study on disease analysis and coping strategies of the plate type elastomeric pad bearings for highway bridges in service[D]. Beijing:China Academy of Railway Sciences, 2012.(in Chinese)
    [13] 施卫星, 李正升. 一种叠层橡胶支座动态性能试验研究[J]. 同济大学学报(自然科学版), 1999, 27(4):417-421. SHI W X, LI Z S. Test study on dynamic behavior of laminated rubber bearings[J]. Journal of Tongji University (Natural Science), 1999, 27(4):417-421.(in Chinese)
    [14] 张子翔. 考虑竖向力效应的叠层橡胶支座力学模型及隔震结构地震响应分析[D]. 武汉:华中科技大学, 2017. ZHANG Z X. Theoretical modeling of elastomeric isolation bearings and seismic response analysis of its superstructure including vertical load effects[D]. Wuhan:Huazhong University of Science and Technology, 2017.(in Chinese)
    [15] 谢宇芳. 正确理解国家标准《硫化橡胶或热塑性橡胶应用阿累尼乌斯图推算寿命和最高使用温度》[J]. 中国石油和化工标准与质量, 2006, 26(10):11-18. XIE Y F. Correctly understand the national standard Life and Maximum Service Temperature of Vulcanized Rubber or Thermoplastic Rubber Calculated by Arrhenius Diagram[J]. China Petroleum and Chemical Standard and Quality, 2006, 26(10):11-18.(in Chinese)
    [16] 周福霖. 工程结构减震控制[M]. 北京:地震出版社, 1997. ZHOU F L. Vibration control of engineering structure[M]. Beijing:Seismological Press, 1997.
    [17] 王树芝. 铁路板式橡胶支座失效条件和使用寿命的研究[J]. 铁道建筑, 2003, 43(7):26-29. WANG S Z. Determination of failure condition for plate elastomeric bearings used on railway bridge and its lifespan[J]. Railway Engineering, 2003, 43(7):26-29.(in Chinese)
    [18] 李瑞. 板式橡胶支座本构试验及抗震性能研究[D]. 哈尔滨:中国地震局工程力学研究所, 2016. LI R. Constitutive experiment and seismic performance researches of laminated rubber bearings[D]. Harbin:Institute of Engineering Mechanics, 2016.(in Chinese)
    [19] 城市桥梁检测与评定技术规范:CJJ/T 233-2015[S]. 北京:中国建筑工业出版社,2015:23-24. Technical code for test and evaluation of city bridges:CJJ/T 233-2015[S]. Beijing:China Architecture & Building Press, 2015:23-24.(in Chinese)
    [20] 公路圬工桥涵设计规范:JTG D 61-2005[S]. 北京:人民交通出版社, 2005:24-25. Code for Design of highway masonry bridges and culverts: JTG D 61-2005 [S]. Beijing: China Communications Press, 2005: 24-25.(in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄海新,李炫钢,李帆,张仲帆,周彤.老化与偏心受压下板式橡胶支座抗震性能拟静力试验研究[J].土木与环境工程学报(中英文),2021,43(3):51-58. HUANG Haixin, LI Xuangang, LI Fan, ZHANG Zhongfan, ZHOU Tong. Pseudo static test of seismic performance of rubber bearing plate under aging and eccentric compression[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2021,43(3):51-58.10.11835/j. issn.2096-6717.2020.069

复制
分享
文章指标
  • 点击次数:678
  • 下载次数: 1016
  • HTML阅读次数: 591
  • 引用次数: 0
历史
  • 收稿日期:2020-03-10
  • 在线发布日期: 2021-04-09
文章二维码