Abstract:To enhance the seismic performance of precast-reinforced concrete frame structure, and aim at the severe damage of beam and column members after earthquake, an innovative construction at beam end called artificial dissipative plastic hinge (ADPH) is proposed. ADPHs are constructions that connect precast beam and column though an embedded mechanical hinge, and additional steel plates are installed to carry the load and dissipate energy. Eight groups of additional steel plate specimens with different sections and structures were designed and fabricated. The low-reversed loading tests are carried out on the artificial dissipative plastic hinge structures with different additional steel plates, the failure modes are analysed, and the seismic performance of ADPH are studied through the hysteresis curves, skeleton curves, equivalent viscous damping coefficient and ductility. The results show that the plastic damage will concentrate only on middle part of steel plates, and prove the effectiveness of energy dissipation by bending, ADPH construction possesses the features of damage-control and rapid-replacing, and the U-shape steel plates could enhance the capacity of buckling-delayed and energy-dissipating.