基于IDA的铅黏弹性阻尼减震结构地震易损性研究
CSTR:
作者:
基金项目:

国家重点研发计划(2017YFC0703600);长江学者和创新团队发展计划(IRT13057);广州大学研究生创新能力培养资助计划(2018GDJC-M43);广州市建筑集团有限公司科技计划(2019-KJ019、2019-KJ033)


IDA based seismic fragility analysis of lead viscoelastic damping structure
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为系统评估铅黏弹性阻尼器(Lead Viscoelastic Damper,LVD)减震设计钢筋混凝土框架结构的抗震性能,设计了8度(0.2g)地区的一栋6层钢筋混凝土抗震框架结构(Reinforced Concrete Frame,RCF)和铅黏弹性阻尼减震框架结构(LVD-damped Frame,LVDF)。使用OpenSees软件建立了RCF结构和LVDF结构的弹塑性分析模型,采用ATC-63推荐的22条远场地震动对RCF和LVDF进行增量动力分析,基于增量动力分析结果对其进行概率地震需求分析和地震易损性分析,定量评估了RCF结构和LVDF结构超越各损伤状态的概率。研究表明:铅黏弹性阻尼器可以有效控制结构地震动响应,使同一地震作用下LVDF结构的地震动响应小于RCF结构;由概率地震需求分析结果可知,铅黏弹性阻尼器可以降低因地震动特性差异导致的结构动力分析结果的离散性;由地震易损性分析结果可知,LVDF结构在不同损伤状态下的超越概率均低于RCF结构,表明铅黏弹性阻尼器可以显著降低结构的损伤,提高结构的抗震性能。

    Abstract:

    To systematically evaluate seismic performance of reinforced concrete frame structure designed with lead viscoelastic damper (LVD), a 6-layer RC frame (RCF) and LVD-damped RC frame (LVDF) in 8 degree (0.2g) were designed and established. Finite analysis models of the RCF and LVDF were built using OpenSees. Incremental dynamic analysis (IDA) was conducted to both RCF and LVDF using a total of 22 far field ground motion records as recommended from ATC-63. Based on results of IDA, probabilistic seismic demand analysis followed with the seismic fragility analysis was carried out for RCF and LVDF, and the probability of achieving different damage states of RCF and LVDF were quantitatively evaluated. The analysis results show that lead viscoelastic damper can be used to seismically control structural dynamic behavior so that structural response of LVDF is smaller than that of RCF under the same earthquake. As shown in results of probabilistic seismic demand analysis, LVD reduce dispersion of structural dynamic analysis results due to differences characteristics of ground motion records. As shown in seismic fragility analysis results, LVDF has lower probability of exceedance under different damage states than that of RCF, indicating that LVD can significantly both release structural damage and improve seismic performance of the structure.

    参考文献
    [1] 潘毅, 陈侠辉, 赵俊贤, 等. 基于剪力比的黏弹性阻尼腋撑-RC框架结构设计方法[J]. 建筑结构学报, 2018, 39(Sup1):79-86. PAN Y, CHEN X H, ZHAO J X, et al. Seismic design method of RC frame structure with knee brace of viscoelastic damper based on shear ratio[J]. Journal of Building Structures, 2018, 39(Sup1):79-86. (in Chinese)
    [2] 房晓俊, 周云, 张超. 采用铅黏弹性连梁阻尼器的框架-核心筒结构减震分析[J]. 土木工程学报, 2018, 51(Sup2):1-7, 13. FANG X J, ZHOU Y, ZHANG C. Energy dissipation analysis of a frame-corewall structure equipped with lead-viscoelastic coupling beam dampers[J]. China Civil Engineering Journal, 2018, 51(Sup2):1-7, 13. (in Chinese)
    [3] 石菲. 新型(铅)黏弹性阻尼器性能与应用研究[D]. 广州:广州大学, 2012. SHI F. Performance and application research of (lead) viscoelastic damper[D]. Guangzhou:Guangzhou University, 2012. (in Chinese)
    [4] 周云, 商城豪, 张超. 消能减震技术研究与应用进展[J]. 建筑结构, 2019, 49(19):33-48. ZHOU Y, SHANG C H, ZHANG C. Progress in research and application of energy-dissipated technology[J]. Building Structure, 2019, 49(19):33-48. (in Chinese)
    [5] 国巍, 曾晨, 潘毅, 等. 基于增量动力分析法的高层建筑-阻尼器系统地震易损性分析[J]. 土木与环境工程学报(中英文), 2019, 41(4):59-68. GUO W, ZENG C, PAN Y, et al. IDA based seismic fragility analysis of high-rise building-damper system[J]. Journal of Civil and Environmental Engineering, 2019, 41(4):59-68. (in Chinese)
    [6] Quantification of building seismic performance and factors:FEMA-P695[R]. Washington, DC:Federal Emergency Management Agency, 2009.
    [7] VAMVATSIKOS D, CORNELL C A. Incremental dynamic analysis[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(3):491-514.
    [8] 潘毅, 包韵雷, 国巍, 等. 摆式电涡流TMD-钢框架结构的耦合计算方法与减震分析[J]. 土木与环境工程学报(中英文), 2020, 42(4):84-93. PAN Y, BAO Y L, GUO W, et al. Coupling calculation method and seismic analysis of pendulum eddy current TMD-steel frame structures[J]. Journal of Civil and Environmental Engineering, 2020, 42(4):84-93. (in Chinese)
    [9] HUANG W Y, ZHANG C, SHI F, et al. Study on seismic performance and energy demand of RC frame constructed with lead viscoelastic damper under strong earthquake[C]//The 9th Asia-Pacific Young Researchers and Graduates Symposium, Shanghai, China, 2019.
    [10] Earthquake loss estimation methodology:user's manual:FEMA HUZUS99[R]. Washington, DC:Federal Emergency Management Agency, 1999.
    [11] 建筑抗震设计规范:GB 50011-2010[S]. 北京:中国建筑工业出版社, 2010. Code for seismic design of buildings:GB 50011-2010[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
    [12] 混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社, 2011. Code for design of concrete structures:GB 50010-2010[S]. Beijing:China Architecture & Building Press, 2011. (in Chinese)
    [13] 建筑消能减震技术规程:JGJ 297-2013[S]. 北京:建筑工业出版社, 2013. Technical specification for seismic energy dissipation of buildings:JGJ 297-2013[S]. Beijing:China Architecture & Building Press, 2013. (in Chinese)
    [14] 房晓俊. 功能自恢复连梁抗震性能研究[D]. 广州:广州大学, 2018. FANG X J. Study on seismic performance of self-resilient coupling beam[D]. Guangzhou:Guangzhou University, 2018. (in Chinese)
    [15] OpenSees. Open system for earthquake engineering simulation[R]. Pacific Earthquake Engineering Research Center, University of California:Berkeley, CA, 2007.
    [16] FILIPPOU F C, POPOV E G, BERTERO V V. Effects of bond deterioration on hysteretic behavior of reinforced concrete joints[R]. Berkeley:Earthquake Engineering Research Center, 1983.
    [17] MOHAMMADI R K, NASRI A, GHAFFARY A. TADAS dampers in very large deformations[J]. International Journal of Steel Structures, 2017, 17(2):515-524.
    [18] IBARRA L F, MEDINA R A, KRAWINKLER H. Hysteretic models that incorporate strength and stiffness deterioration[J]. Earthquake Engineering & Structural Dynamics, 2005, 34(12):1489-1511.
    [19] CELIK O C, ELLINGWOOD B R. Modeling beam-column joints in fragility assessment of gravity load designed reinforced concrete frames[J]. Journal of Earthquake Engineering, 2008, 12(3):357-381.
    [20] TERAOKA M, FUJII S. Seismic damage and performance evaluation or R/C beam-column joints[C]//The Second US-Japan Workshop on Performance-Based Engineering for Reinforced Concrete Building Structures, Hokkaido, Japan, 2000, 379-390.
    [21] IBARRA L F, KRAWINKLER H. Global collapse of frame structures under seismic excitations[R]. The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA, 2005.
    [22] 中国地震动参数区划图:GB 18306-2015[S]. 北京:中国标准出版社, 2016. Seismic ground motion parameters zonation map of China:GB 18306-2015[S]. Beijing:Standards Press of China, 2016. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄炜元,张超,周云,石菲.基于IDA的铅黏弹性阻尼减震结构地震易损性研究[J].土木与环境工程学报(中英文),2021,43(3):75-82. HUANG Weiyuan, ZHANG Chao, ZHOU Yun, SHI Fei. IDA based seismic fragility analysis of lead viscoelastic damping structure[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2021,43(3):75-82.10.11835/j. issn.2096-6717.2020.179

复制
分享
文章指标
  • 点击次数:831
  • 下载次数: 1254
  • HTML阅读次数: 583
  • 引用次数: 0
历史
  • 收稿日期:2020-07-16
  • 在线发布日期: 2021-04-09
文章二维码