设置镦锚钢筋的地下综合管廊墙板节点的抗震性能
CSTR:
作者:
基金项目:

重庆市自然科学基金(cstc2018jcyjAX0001)


Seismic performance of utility tunnel wall-slab joints with anchorage button-head reinforcement
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为研究使用镦头锚固钢筋的地下综合管廊墙板节点的抗震性能,对6个足尺墙板节点进行了低周往复荷载试验,考察了地下综合管廊墙板节点的承载能力、失效模式、滞回耗能能力、位移延性等抗震性能指标,将现浇墙板节点试件与叠合装配式墙板节点试件的试验结果进行对比,分析了镦锚钢筋锚固长度的合理取值,采用有限元程序建立节点的精细有限元模型,验证了其正确性。结果表明:设置镦头钢筋锚固的叠合装配式节点具有与现浇节点大致相当的承载能力,位移延性及耗能能力相对较好,叠合装配式节点能达到与现浇节点相近的抗震性能要求。镦头钢筋锚固长度采用0.5labE时,地下综合管廊墙板节点试件抗震性能满足抗震设计要求,随着镦锚钢筋锚固长度的减小,墙板节点的承载能力和变形能力逐渐下降,延性及耗能能力逐渐降低;叠合装配式节点在低周往复加载下,预制叠合面缝隙开展较大,节点核心区混凝土易发生破坏,在实际工程中需采取必要的加强措施,加强节点区连接构造措施。

    Abstract:

    To evaluate the seismic performance of utility tunnel wall-slab joints using anchorage button-head reinforcement, pseudo-static tests were carried out on six full-scale wall-slab joint specimens. Bearing capacity, failure mode, hysteretic energy dissipation, displacement ductility and other seismic performance indexes of utility tunnel wall-slab joints were investigated. Comparing the test results of the cast-in-place wall-slab joint specimens with that of composite fabricated wall-slab joint specimens, reasonable anchorage length of upsetting steel bar was determined. The finite element model of these wall-slab joints was established and its validity was checked. The results show that the composite fabricated wall-slab joint using anchorage button-head reinforcement has the same bearing capacity as that of the cast-in-place joint, and displacement ductility and energy dissipation capacity are good, indicating that the composite fabricated wall-slab joints can meet the seismic performance requirements. When the anchorage length of upsetting steel bar is longer than 0.5labE, the seismic performance of joint specimens can meet seismic design requirements. However, as the anchorage length of upsetting steel bar decreases, the bearing capacity and deformation capacity of wall-slab joints gradually decrease, and the ductility and energy dissipation capacity also decrease gradually. The crack propagation at the composite surface of prefabricated wall-slab joints is greater, and damage in the core area of the joint is severe. Consequently, necessary reinforcement measures need to be taken and the connection measures of the joint area need to be strengthened in engineering practice.

    参考文献
    [1] 张亦筑. 中冶建工在国内首创钢筋墩锚技术性能优于传统弯钩锚固,节约钢材60%以上[N]. 重庆日报, 2016-11-15(1). ZHANG Y Z. China Metallurgical Construction Engineering Group Co., Ltd. first invented anchoragetechnology for button-head reinforcement in China[N]. Chongqing Daily, 2016-11-15(1).
    [2] MARSHALL A M, HAJI T. An analytical study of tunnel-pile interaction[J]. Tunnelling and Underground Space Technology, 2015, 45:43-51.
    [3] HUNT D V L, NASH D, ROGERS C D F. Sustainable utility placement via multi-utility tunnels[J]. Tunnelling and Underground Space Technology, 2014, 39:15-26.
    [4] 张博华, 吕宝伟. 地下综合管廊交叉口节点地震动力响应特性研究[J]. 科技与创新, 2017(21):8-10. ZHANG B H, LYU B W. Seismic dynamic response analysis of cross joint in the utility tunnel[J]. Science and Technology & Innovation, 2017(21):8-10. (in Chinese)
    [5] 郭恩栋, 王鹏宇, 刘述虹, 等. 典型综合管廊体系的地震响应分析[J]. 地震工程与工程振动, 2018, 38(1):124-134. GUO E D, WANG P Y, LIU S H, et al. Seismic response analysis of typical utility tunnel system[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(1):124-134. (in Chinese)
    [6] 王鹏宇, 王述红, 朱承金. 城市地下管廊结构地震动力响应分析[J]. 东北大学学报(自然科学版), 2019, 40(7):1020-1027. WANG P Y, WANG S H, ZHU C J. Seismic dynamic response analysis of urban underground utility tunnel structure[J]. Journal of Northeastern University(Natural Science), 2019, 40(7):1020-1027. (in Chinese)
    [7] 田子玄. 装配叠合式混凝土地下综合管廊受力性能试验研究[D]. 哈尔滨:哈尔滨工业大学, 2016:1-8. TIAN Z X. Experimental research on force performance of precast concrete underground comprehensive municipal tunnel[D]. Harbin:Harbin Institute of Technology, 2016:1-8.(in Chinese)
    [8] 魏奇科, 王宇航, 王永超, 等. 叠合装配式地下综合管廊节点抗震性能试验研究[J]. 建筑结构学报, 2019, 40(2):246-254. WEI Q K, WANG Y H, WANG Y C, et al. Experiment study on seismic performance of joints in prefabricated sandwich structures of utility tunnels[J]. Journal of Building Structures, 2019, 40(2):246-254. (in Chinese)
    [9] 杨艳敏, 王运克, 田锌如, 等. 底部腋角配置斜向钢筋装配叠合管廊抗震性能试验研究[J]. 吉林建筑大学学报, 2019, 36(3):7-11. YANG Y M, WANG Y K, TIAN X R, et al. Experimentalstudy on seismic performance of assembled composite pipe gallery with inclined reinforcement at bottom axillary angle[J]. Journal of Jilin Jianzhu University, 2019, 36(3):7-11. (in Chinese)
    [10] 于建兵, 周莉萍, 郭正兴, 等. 部分高强筋预制混凝土框架节点抗震性能研究[J]. 振动与冲击, 2019, 38(11):17-23. YU J B, ZHOU L P, GUO Z X, et al. Seismic behavior of precast concrete frame joints with partial high strength tendons[J]. Journal of Vibration and Shock, 2019, 38(11):17-23. (in Chinese)
    [11] 王文达, 韩林海, 陶忠. 钢管混凝土柱-钢梁平面框架抗震性能的试验研究[J]. 建筑结构学报, 2006, 27(3):48-58. WANG W D, HAN L H, TAO Z. Experimental research on seismic behavior of concrete filled CHS and SHS columns and steel beam planar frames[J]. Journal of Building Structures, 2006, 27(3):48-58. (in Chinese)
    [12] ZHANG J, LI J, JU J W. 3D elastoplastic damage model for concrete based on novel decomposition of stress[J].International Journal of Solids and Structures, 2016, 94/95:125-137.
    [13] HAWILEH R A, RAHMAN A, TABATABAI H. Nonlinear finite element analysis and modeling of a precast hybrid beam-column connection subjected to cyclic loads[J]. Applied Mathematical Modelling, 2010, 34(9):2562-2583.
    [14] ELCHALAKANI M, KARRECH A, DONG M H, et al. Experiments and finite element analysis of GFRP reinforced geopolymer concrete rectangular columns subjected to concentric and eccentric axial loading[J]. Structures, 2018, 14:273-289.
    [15] BEDIRHANOGLU I, ILKI A, KUMBASAR N. Precast fiber reinforced cementitious composites for seismic retrofit of deficient RC joints-A pilot study[J]. Engineering Structures, 2013, 52:192-206.
    [16] JOAKIM C, BINYAM T. Finite element modelling of interlaminar slip in stress-laminated timber decks, friction interaction modelling using Abaqus[D]. G teborg:Chalmers University of Technology, 2012.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李正英,余书君,魏奇科,贺继军.设置镦锚钢筋的地下综合管廊墙板节点的抗震性能[J].土木与环境工程学报(中英文),2021,43(3):157-166. LI Zhengying, YU Shujun, WEI Qike, HE Jijun. Seismic performance of utility tunnel wall-slab joints with anchorage button-head reinforcement[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2021,43(3):157-166.10.11835/j. issn.2096-6717.2020.057

复制
分享
文章指标
  • 点击次数:675
  • 下载次数: 923
  • HTML阅读次数: 498
  • 引用次数: 0
历史
  • 收稿日期:2020-01-01
  • 在线发布日期: 2021-04-09
文章二维码