[关键词]
[摘要]
为了了解SBR强化生物除磷(EBPR)颗粒污泥系统的影响因素,为颗粒污泥生物除磷工艺的实际应用提供技术支持,采用有效容积为12 L的SBR反应器,以乙酸钠为碳源、KH2PO4为磷源,对EBPR颗粒污泥系统的启动和除磷性能及污泥颗粒化过程进行研究。结果表明:若进水碳磷比过低(C:P=200:15),除磷效率较低。与25℃相比,15℃条件下污泥EPS含量增加。此外,15℃条件下污泥颗粒化的蛋白质(PN)含量增加更为显著,污泥粒径增长明显,且与25℃相比,在15℃的低温条件下,更利于传统EBPR系统中主要负责生物除磷的微生物红环菌属(Rhodocyclus)的生长,使其成为系统优势菌种,进而提高除磷效率。
[Key word]
[Abstract]
This study investigated factors influencing a sequencing batch reactor (SBR) enhanced biological phosphorus removal (EBPR) granular sludge system, in order to provide technical support for the practical application of EBPR. The start-up, the phosphorus removal performance of the EBPR granular sludge system and the sludge granulation were studied in a SBR system with a working volume of 12L, where sodium acetate was used as the carbon source and KH2PO4 was used as the phosphorus source. Results showed that when the carbon to phosphorus ratio of influent was too low (C:P=200:15), the phosphorus removal efficiencies were at a low level. Compared with 25℃, the EPS content of sludge increased at 15℃. Moreover, the increase of protein (PN) content was more obvious at 15℃, which was conducive to sludge granulation and resulted in an obvious increase of sludge particle size. Compared with 25℃, the lower temperature of 15℃ was more favorable for the growth of Rhodocyclus, which is mainly responsible for biological phosphorus removal in traditional EBPR systems. This resulted in Rhodocyclus becoming the dominant bacteria in the system and improved the phosphorus removal efficiencies.
[中图分类号]
TU703.1
[基金项目]
National Natural Science Foundation of China (No.51678388)