絮凝-固化联合真空预压处理高含水率淤泥(浆)试验研究
CSTR:
作者:
中图分类号:

TU432

基金项目:

国家重点研发计划(2016YFC0800200);国家自然科学基金(51678266、51978303)


Experimental study on flocculation-solidification combined with vacuum preloading treatment of dredged mud with high moisture content
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    絮凝-固化联合法(FSCM)是超高含水率疏浚泥浆(EHW-MS)处理和循环利用的合理选择。然而,面向对填料力学性能要求较高的资源化利用情形时,FSCM在固化效率上仍存在一定的局限性。在FSCM的基础上引入低位真空预压技术(VP),对EHW-MS用作路堤填料提出了一套新的技术方法——真空预压-絮凝-固化联合法(VP-FSCM),以达到淤泥浆深度脱水、提高固化效率的目的。通过开展一系列室内模型试验,来确定所提出的VP-FSCM的优越性,并探究其处理优势随等效初始含水率的变化规律;结合微观测试手段,分析和论证了VP-FSCM的内在机理和可行性。结果显示,采用VP-FSCM能使试样的不排水抗剪强度最高提高至FSCM的1.65倍,并且强度优势稳定在1.2倍以上。其处理优势在微观层面上表现为C(A)SH凝胶、钙矾石等水化产物数量及发育程度得到明显提升,进一步填充与密实土体结构。

    Abstract:

    Flocculation-solidification combined (FSCM) is a reasonable choice for the treatment and recycling of dredged mud slurry at extra high water content (EHW-MS). However, FSCM tends to show some limitations when the treated EHW-MS is recycled as filling material with high requirement on mechanical properties. In order to improve the treatment efficiency of EHW-MS, a new method is proposed, i.e., vacuum preloading-flocculation-solidification combined method (VP-FSCM). A series of laboratory model tests are done to verify the advantages of the VP-FSCM, and to identify the variation of its treatment advantages with the equivalent initial water content. In addition, the internal mechanism and feasibility of VP-FSCM are analyzed and demonstrated by micro-tests (e.g. XRD and SEM). The results show that the undrained shear strength of the VP-FSCM treated EHW-MS can be increased to 1.65 times than that of FSCM, and the strength advantage is maintained at least 1.2 times. On the micro level, the advantage of VP-FSCM is that the quantity and development of hydration products such as C(A)SH gel and ettringite have been significantly improved, and the soil structure has been further filled and compacted.

    参考文献
    [1] 汪顺才, 张春雷, 黄英豪, 等. 堆场疏浚淤泥含水率分布规律调查研究[J]. 岩土力学, 2010, 31(9):2823-2828.WANG S C, ZHANG C L, HUANG Y H, et al. Study of diversification of water contents in dredged sediment storage yard[J]. Rock and Soil Mechanics, 2010, 31(9):2823-2828. (in Chinese)
    [2] 朱伟, 闵凡路, 吕一彦, 等. "泥科学与应用技术"的提出及研究进展[J]. 岩土力学, 2013, 34(11):3041-3054.ZHU W, MIN F L, LÜ Y Y, et al. Subject of "mud science and application technology" and its research progress[J]. Rock and Soil Mechanics, 2013, 34(11):3041-3054. (in Chinese)
    [3] 张春雷, 管非凡, 李磊, 等. 中国疏浚淤泥的处理处置及资源化利用进展[J]. 环境工程, 2014, 32(12):95-99.ZHANG C L, GUAN F F, LI L, et al. The progress in the reutillzation treatment and disposal of dredged sediments in China[J]. Environmental Engineering, 2014, 32(12):95-99. (in Chinese)
    [4] 陈萌, 杨国录, 刘广容, 等. 污泥中重金属的处理[J]. 南水北调与水利科技, 2011, 9(3):92-95,100.CHEN M, YANG G L, LIU G R, et al. Research progress on heavy metals treatment of sludge[J]. South-to-North Water Transfers and Water Science & Technology, 2011, 9(3):92-95,100.(in Chinese)
    [5] 黄英豪, 董婵. 淤泥处理技术原理及分类综述[J]. 人民黄河, 2014, 36(7):91-94.HUANG Y H, DONG C. Principles and classifications for treatment of dredged material[J]. Yellow River, 2014, 36(7):91-94. (in Chinese)
    [6] 吉锋, 邓东升, 洪振舜, 等. 高含水率疏浚淤泥透气真空防淤堵模型[J]. 土木建筑与环境工程, 2013, 35(1):26-31.JI F, DENG D S, HONG Z S, et al. Anti-clogging model of dredged clays dewatering with ventilating vacuum method[J]. Journal of Civil, Architectural & Environmental Engineering, 2013, 35(1):26-31. (in Chinese)
    [7] 刘青松, 张春雷, 汪顺才, 等. 淤泥堆场人工硬壳层地基极限承载力室内模拟研究[J]. 岩土力学, 2008, 29(Sup1):667-670.LIU Q S, ZHANG C L, WANG S C, et al. Laboratory simulation study of the ultimate bearing capacity of the man-made crust over dredged wastes dump sites[J]. Rock and Soil Mechanics, 2008, 29(Sup1):667-670. (in Chinese)
    [8] ZHANG R J, SANTOSO A M, TAN T S, et al. Strength of high water-content marine clay stabilized by low amount of cement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12):2170-2181.
    [9] WU D Q, XU W Y, ZHU D P. The chemical-physical combined method for improving clay slurry in land reclamation[C]//Second International Conference on Geotechnical and Earthquake Engineering. October 25-27, 2013, Chengdu, China. Reston, VA, USA:American Society of Civil Engineers, 2013:308-315.
    [10] 郑耀林, 章荣军, 郑俊杰, 等. 絮凝-固化联合处理超高含水率吹填淤泥浆的试验研究[J]. 岩土力学, 2019, 40(8):3107-3114.ZHENG Y L, ZHANG R J, ZHENG J J, et al. Experimental study of flocculation-solidification combined treatment of hydraulically dredged mud at extra high-water content[J]. Rock and Soil Mechanics, 2019, 40(8):3107-3114. (in Chinese)
    [11] 章荣军, 董超强, 郑俊杰, 等. 絮凝剂和缓凝剂对水泥固化疏浚淤泥浆效率的影响研究[J]. 岩土工程学报, 2019, 41(10):1928-1935.ZHANG R J, DONG C Q, ZHENG J J, et al. Influences of flocculant and retarder on solidification efficiency of cement in treatment of dredged mud slurry[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10):1928-1935. (in Chinese)
    [12] ZHANG R J, DONG C Q, LU Z, et al. Strength characteristics of hydraulically dredged mud slurry treated by flocculation-solidification combined method[J]. Construction and Building Materials, 2019, 228:116742.
    [13] ZHANG R J, ZHENG Y L, ZHENG J J, et al. Flocculation-solidification combined method for treatment of hydraulically dredged mud at extra high water content[J]. Acta Geotechnica, 2020, 15(6):1685-1698.
    [14] SUN H L, WENG Z Q, LIU S J, et al. Compression and consolidation behaviors of lime-treated dredging slurry under vacuum pressure[J]. Engineering Geology, 2020, 270:105573.
    [15] 武亚军, 牛坤, 唐海峰, 等. 药剂真空预压法处理工程废浆中生石灰的增渗作用[J]. 岩土力学, 2017, 38(12):3453-3461.WU Y J, NIU K, TANG H F, et al. Enhanced permeability of calcium lime in construction waste slurry improvement by vacuum preloading with flocculation[J]. Rock and Soil Mechanics, 2017, 38(12):3453-3461. (in Chinese)
    [16] 张春雷, 汪顺才, 朱伟, 等. 初始含水率对水泥固化淤泥效果的影响[J]. 岩土力学, 2008, 29(Sup1):567-570.ZHANG C L, WANG S C, ZHU W, et al. Influence of initial water content on cement solidification effect of dredged material[J]. Rock and Soil Mechanics, 2008, 29(Sup1):567-570. (in Chinese)
    [17] 刘飞禹, 张志鹏, 王军, 等. 分级真空预压联合间歇电渗法加固疏浚淤泥宏微观分析[J]. 岩石力学与工程学报, 2020, 39(9):1893-1901.LIU F Y, ZHANG Z P, WANG J, et al. Macro and micro analyses of stepped vacuum preloading combined with intermittent electroosmosis for treating dredger slurry[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9):1893-1901. (in Chinese)
    [18] 张春雷. 基于水分转化模型的淤泥固化机理研究[D]. 南京:河海大学, 2007.ZHANG C L. Study of dredged sediments solidification mechanism based on water transfer model[D]. Nanjing:Hohai University, 2007. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐志豪,章荣军,郑俊杰,屠林伟.絮凝-固化联合真空预压处理高含水率淤泥(浆)试验研究[J].土木与环境工程学报(中英文),2021,43(5):10-18. Xu Zhihao, Zhang Rongjun, Zheng Junjie, Tu Linwei. Experimental study on flocculation-solidification combined with vacuum preloading treatment of dredged mud with high moisture content[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2021,43(5):10-18.10.11835/j. issn.2096-6717.2020.200

复制
分享
文章指标
  • 点击次数:579
  • 下载次数: 1362
  • HTML阅读次数: 675
  • 引用次数: 0
历史
  • 收稿日期:2020-09-18
  • 在线发布日期: 2021-07-20
文章二维码