火灾条件下冷弯薄壁型钢楼板体系的耐火性能
CSTR:
作者:
中图分类号:

TU392.1

基金项目:

国家自然科学基金(51778537、51878578);国家重点研发计划项目(2016YFC0802205、2019YFD1101001);四川省科技计划(2019YFS0064)


Fire resistance of cold-formed light gauge steel frame floor systems under fire conditions
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    冷弯薄壁型钢楼板的耐火性能是决定其作为装配式结构能否推广的重要因素,目前可供借鉴的足尺火灾试验数量有限,且大部分数值模拟局限于用二维传热模型开展温度场分析,或基于简化的线性温度分布开展三维模型的热–力耦合分析。由于冷弯薄壁型钢楼板构造的复杂性,利用二维传热模型以及简化线性温度分布假定开展的热–力耦合分析,由于未考虑三维结构在受火时真实的非线性传热机制,其所反映的结构抗火性能与真实情况可能存在显著差异。为更准确地描述这类结构的耐火性能,针对由冷弯薄壁型钢骨架、结构胶合板和石膏板、岩棉等材料组成的楼板体系建立了三维传热模型,按照ISO-834标准升温环境模拟火灾情境,进行非线性传热过程和热–力耦合的分析,描述了三维非线性传热机制和具有热–力耦合特征的结构行为;提出了更为准确的接触行为建模方法,以反映自攻螺钉、板材、轻钢构件之间接触传力关系和变形协调特征。在与两组足尺楼板体系火灾试验数据对比的基础上,给出了由数值模拟得到的结构行为机理解释。研究表明:提出的三维传热和三维热–力耦合分析数值模型能准确反映火灾条件下结构的力学行为,模拟的结构非线性温度分布特征、托梁的变形演化机制以及最终破坏形态与试验结果吻合较好。

    Abstract:

    Cold-formed light gauge steel framing (LSF) structure is a new type of fabricated steel structure. Fire resisting performance of LSF structure is the key factor for promoting related practical application. However, for the LSF floor as one of the main load–bearing systems in LSF structures, the available fire testing data are limited. Most of the published numerical investigations of LSF floors are carried out by using two-dimensional heat transfer analysis to study the temperature rise and distribution, or simplified linear temperature distributions. The difference between the analysis results of two-dimension and three-dimension structural members could accumulate and evolve into the essential discrepancy in force transfer when the structural scale is large and the system is complex. To determine the mechanism of the fire resistance, the model describing a floor system consists of LSF, structural plywood, and fire-resistant panel such as gypsum board or rock wool was built up in this article. According to the ISO-834 standard, the nonlinear heat process and coupled thermo-mechanical analyses were carried out. Hence, the influence of the three-dimensional thermal field and the coupling mechanical behaviors were demonstrated. In addition, a simplified modeling approach was presented to accurately describe the contact relationship, force transfer, and the deformation coordination between self-tapping screws, structural plates, and light steel members. After comparing with two sets of fire testing data for the full-scale floor slab systems, the mechanism drawn from the numerical simulation above mentioned was verified. In general, this model based on three-dimensional heat conduction and thermal-mechanical coupling can effectively describe the LSF spatial mechanical behavior under fire conditions. The results about nonlinear temperature distribution, the deformation evolution of the joists, and the final destruction mode are consistent with those of fire testing. The proposed modeling strategy can be utilized to predict the fire resistance of LSF floor systems and evaluate the effective factors on structural high-temperature behaviors via parametric analysis.

    参考文献
    [1] 韩林海, 宋天诣, 谭清华. 钢-混凝土组合结构抗火设计原理研究[J]. 工程力学, 2011, 28(Sup2):54-66.HAN L H, SONG T Y, TAN Q H. Fire resistance design of steel-concrete composite structures[J]. Engineering Mechanics, 2011, 28(Sup2):54-66. (in Chinese)
    [2] 王广勇, 韩林海. 局部火灾下钢筋混凝土平面框架结构的耐火性能研究[J]. 工程力学, 2010, 27(10):81-89.WANG G Y, HAN L H. Fire performance of reinforced concrete plane frame exposed to local fire[J]. Engineering Mechanics, 2010, 27(10):81-89. (in Chinese)
    [3] KOLARKAR P N. Structural and thermal performance of cold-formed steel stud wall systems under fire conditions[D]. Queensland:Queensland University of Technology, 2011.
    [4] 叶继红, 陈伟, 尹亮. C形冷弯薄壁型钢承重组合墙体足尺耐火试验研究[J]. 土木工程学报, 2013, 46(8):1-10.YE J H, CHEN W, YIN L. Full-scale fire resistance tests on load-bearing C-shape cold-formed steel wall systems[J]. China Civil Engineering Journal, 2013, 46(8):1-10. (in Chinese)
    [5] 余志武, 王中强, 蒋丽忠. 火灾下钢筋混凝土板的温度场分析[J]. 铁道科学与工程学报, 2004, 1(1):58-61.YU Z W, WANG Z Q, JIANG L Z. Analysis of temperature field in reinforced concrete slabs exposed to fire[J]. Journal of Railway Science and Engineering, 2004, 1(1):58-61.(in Chinese)
    [6] FENG M, WANG Y C. An experimental study of loaded full-scale cold-formed thin-walled steel structural panels under fire conditions[J]. Fire Safety Journal, 2005, 40(1):43-63.
    [7] JATHEESHAN V, MAHENDRAN M. Experimental study of cold-formed steel floors made of hollow flange channel section joists under fire conditions[J]. Journal of Structural Engineering, 2016, 142(2):04015134.
    [8] BALESHAN B, MAHENDRAN M. Experimental study of light gauge steel framing floor systems under fire conditions[J]. Advances in Structural Engineering, 2017, 20(3):426-445.
    [9] 叶继红, 陈伟, 汪正流, 等. 冷弯薄壁C型钢托梁-加气混凝土板组合楼盖足尺耐火试验研究[J]. 建筑结构学报, 2015, 36(8):108-115.YE J H, CHEN W, WANG Z L, et al. Full scale fire experiments on cold-formed steel C-shape joists-ALC composite floors[J]. Journal of Building Structures, 2015, 36(8):108-115. (in Chinese)
    [10] 蒋首超, 李国强, 周宏宇, 等. 钢-混凝土组合楼盖抗火性能的试验研究[J]. 建筑结构学报, 2004, 25(3):45-50.JIANG S C, LI G Q, ZHOU H Y, et al. Experimental study of behavior of steel-concrete composite slabs subjected to fire[J]. Journal of Building Structures, 2004, 25(3):45-50. (in Chinese)
    [11] 王卫永, 李国强, 陈玲珠, 等. 钢筋桁架楼承板钢组合梁抗火性能试验研究[J]. 土木工程学报, 2015, 48(9):67-75.WANG W Y, LI G Q, CHEN L Z, et al. Experimental study on fire resistance of steel bar truss slab and steel composite beams[J]. China Civil Engineering Journal, 2015, 48(9):67-75. (in Chinese)
    [12] FENG M, WANG Y C, DAVIES J M. Thermal performance of cold-formed thin-walled steel panel systems in fire[J]. Fire Safety Journal, 2003, 38(4):365-394.
    [13] SULTAN M A. Fire resistance of steel C-joist floor assemblies[J]. Fire Technology, 2010, 46(2):375-405.
    [14] THOMAS G. Modelling thermal performance of gypsum plasterboard-lined light timber frame walls using SAFIR and TASEF[J]. Fire and Materials, 2010, 34(8):385-406.
    [15] WANG H B. Heat transfer analysis of components of construction exposed to fire[D]. Salford:University of Salford, 1995:84-85.
    [16] GUNALAN S, MAHENDRAN M. Finite element modelling of load bearing cold-formed steel wall systems under fire conditions[J]. Engineering Structures, 2013, 56:1007-1027.
    [17] KEERTHAN P, MAHENDRAN M. Numerical modelling of non-load-bearing light gauge cold-formed steel frame walls under fire conditions[J]. Journal of Fire Sciences, 2012, 30(5):375-403.
    [18] BALESHAN B, MAHENDRAN M. Numerical study of high strength LSF floor systems in fire[J]. Thin-Walled Structures, 2016, 101:85-99.
    [19] JATHEESHAN V, MAHENDRAN M. Numerical study of LSF floors made of hollow flange channels in fire[J]. Journal of Constructional Steel Research, 2015, 115:236-251.
    [20] RUSTHI M, KEERTHAN P, ARIYANAYAGAM A, et al. Numerical studies of gypsum plasterboard and MgO board lined LSF walls exposed to fire[C]//Proceedings of the Second International Conference on Performance-based and Life-cycle Structural Engineering (PLSE 2015). Brisbane, QLD, Australia. School of Civil Engineering, The University of Queensland, 2015:1077-1084.
    [21] International Standard Organization. Fire-resistance tests-elements of building construction, Part 1:General requirements:ISO-834[S]. Geneva:International Standard Organization, 1999.
    [22] RUSTHI M, KEERTHAN P, MAHENDRAN M, et al. Investigating the fire performance of LSF wall systems using finite element analyses[J]. Journal of Structural Fire Engineering, 2017, 8(4):354-376.
    [23] SONG Q Y, WU X B, HAN L H. Investigation on temperature distribution of light gauge steel frame (LSF) wall[C]//9th International Conference on Steel and Aluminium Structures. Bradford:Routledge, 2019:1447-1458.
    [24] SONG Q Y, WU X B, HAN L H. Modelling of temperature rise of light steel frame walls in fire[C]//2019 International Conference on Advances in Civil Engineering and Materials (ACEM2019) and 2nd World Symposium on Sustainable Bio-composite Materials and Structures (SBMS2). Fuzhou, 2019:25-27.
    [25] British Standards Institution. Eurocode 1:Design of concrete structures:part 1-2:General actions-actions on structures exposed to fire:BS EN 1991-1-2[S]. London:British Standards Institution, 2002.
    [26] JATHEESHAN V, MAHENDRAN M. Thermal performance of LSF floors made of hollow flange channel section joists under fire conditions[J]. Fire Safety Journal, 2016, 84:25-39.
    [27] STERNER E, WICKSTRÖM U. TASEF-temperature analysis of structures exposed to fire[M]. 1990:98-99.
    [28] British Standards Institution. Eurocode 3:Design of steel structures:part 1-2:General rules-structural fire design:BS EN 1993-1-2[S]. London:British Standards Institution, 2005.
    [29] CHEN W, YE J H. Simplified prediction of the thermal and mechanical behavior of a cold-formed steel composite floor at room and elevated temperatures[J]. Journal of Structural Engineering, 2016, 142(6):04016028.
    [30] British Standards Institution. Eurocode 5:Design of timber structures:part 1-2:General -structural fire design:BS EN 1995-1-2[S]. London:British Standards Institution, 2004.
    [31] YOUNG S A, CLANCY P. Structural modelling of light-timber framed walls in fire[J]. Fire Safety Journal, 2001, 36(3):241-268.
    [32] NASSIF A Y, YOSHITAKE I, ALLAM A. Full-scale fire testing and numerical modelling of the transient thermo-mechanical behaviour of steel-stud gypsum board partition walls[J]. Construction and Building Materials, 2014, 59:51-61.
    [33] KANKANAMGE N D, MAHENDRAN M. Mechanical properties of cold-formed steels at elevated temperatures[J]. Thin-Walled Structures, 2011, 49(1):26-44.
    [34] 建筑构件耐火试验方法:GB/T 9978-1988[S]. 北京:中国标准出版社, 2009.Fire-resistance tests:Elements of building construction:GB/T 9978-1988[S]. Beijing:Standards Press of China, 2009. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨成,罗浪,宋谦益.火灾条件下冷弯薄壁型钢楼板体系的耐火性能[J].土木与环境工程学报(中英文),2021,43(5):81-93. YANG Cheng, LUO Lang, SONG Qianyi. Fire resistance of cold-formed light gauge steel frame floor systems under fire conditions[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2021,43(5):81-93.10.11835/j. issn.2096-6717.2021.031

复制
分享
文章指标
  • 点击次数:455
  • 下载次数: 1036
  • HTML阅读次数: 385
  • 引用次数: 0
历史
  • 收稿日期:2020-11-10
  • 在线发布日期: 2021-07-20
文章二维码