水环境下掺铝硅质基体-树脂粘结界面性能演变的分子动力学模拟与验证
CSTR:
作者:
中图分类号:

TU58

基金项目:

国家自然科学基金(U1806225)


A molecular dynamics simulation and validation of bonding behavior evolution between epoxy and aluminum-doped silica substrate under water environment
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以硅铝相为主的玄武岩纤维复合材料筋常被应用于潮湿腐蚀等恶劣环境中,水分子会导致环氧树脂与玄武岩纤维的粘结性能下降,直接影响玄武岩纤维复合材料筋的力学与耐久性能。采用部分铝原子取代硅原子构建了掺铝二氧化硅的玄武岩纤维表面基底模型,基于分子动力学模拟水浸泡环境下环氧树脂与掺铝二氧化硅基体两相间的粘结性能演变。模拟结果表明:掺铝二氧化硅与环氧树脂粘结力弱于纯二氧化硅;环氧树脂与纤维基底两相间主要通过环氧树脂氧原子(Oe)-纤维基底氢原子(Hs)-纤维基底氧原子(Os)氢键作用方式粘结;水分子存在会占据两相粘结的氢键作用原子对中的反应位点,降低两相间粘结力;水浸泡28 d后玄武岩纤维束与环氧树脂界面粘结力降低了47.53%,验证了分子模型的可行性。

    Abstract:

    Basalt fiber reinforced polymer(BFRP) with silica-alumina component, is always used in the harsh environment such as moist or corrosive environment,and water molecules will lead to the decline of the bonding capacity between epoxy resin and basalt fiber,which will further affect the mechanical properties and durability of BFRP. An aluminum-doped silica substrate model of basalt fiber surface is established by partly replacing silicon atoms with aluminum atoms. The evolution of interfacial bonding properties between epoxy and aluminum-doped silica substrate in water environment are simulated based on molecular dynamic (MD). Simulation results show that the bonding force of aluminum-doped silica substrate with epoxy is weaker than that of pure silica substrate. The epoxy and fiber substrate are bonded in the manner of H-bonds formed by oxygen of epoxy-hydrogen of substrate-oxygen of substrate. Water molecular weakens the bonding capacity by occupying the reactive sites of atomic pairs in H-bond. The feasibility of the molecular model was verified by the 47.53% decreased bonding force at the interface between basalt fiber bundles and epoxy resin under the condition of water immersion for 28 days.

    参考文献
    [1] 金祖权, 赵铁军, 陈惠苏, 等. 海洋环境下裂缝混凝土氯盐腐蚀[J]. 中南大学学报(自然科学版), 2012, 43(7):2821-2826.JIN Z Q, ZHAO T J, CHEN H S, et al. Chloride corrosion of splitting cracked concrete under marine environment[J]. Journal of Central South University (Science and Technology), 2012, 43(7):2821-2826. (in Chinese)
    [2] WANG Z K, ZHAO X L, XIAN G J, et al. Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment[J]. Construction and Building Materials, 2017, 139:467-489.
    [3] 董志强, 吴刚. FRP筋增强混凝土结构耐久性能研究进展[J]. 土木工程学报, 2019, 52(10):1-19,29.DONG Z Q, WU G. Research progress on durability of FRP bars reinforced concrete structures[J]. China Civil Engineering Journal, 2019, 52(10):1-19,29. (in Chinese)
    [4] NANNI A, AHMAD S, ALBRECHT P, et al. Abstract of:state-of-the-art-report on flber reinforced plastic (FRP) for concrete structures[J]. ACI Structural Journal, 1995, 92(5):627-628.
    [5] AL-SALLOUM Y A, EL-GAMAL S, ALMUSALLAM T H, et al. Effect of harsh environmental conditions on the tensile properties of GFRP bars[J]. Composites Part B:Engineering, 2013, 45(1):835-844.
    [6] CHEN Y, DAVALOS J F, RAY I. Durability prediction for GFRP reinforcing bars using short-term data of accelerated aging tests[J]. Journal of Composites for Construction, 2006, 10(4):279-286.
    [7] SEN R, MULLINS G, SALEM T. Durability of E-glass/vinylester reinforcement in alkaline solution[J]. ACI Structural Journal, 2002, 99(3):369-375.
    [8] BENMOKRANE B, WANG P, TON-THAT T M, et al. Durability of glass fiber-reinforced polymer reinforcing bars in concrete environment[J]. Journal of Composites for Construction, 2002, 6(3):143-153.
    [9] ROBERT M, COUSIN P, BENMOKRANE B. Durability of GFRP reinforcing bars embedded in moist concrete[J]. Journal of Composites for Construction, 2009, 13(2):66-73.
    [10] KAMAL A S M, BOULFIZA M. Durability of GFRP rebars in simulated concrete solutions under accelerated aging conditions[J]. Journal of Composites for Construction, 2011, 15(4):473-481.
    [11] BENMOKRANE B, ROBERT M, MOHAMED H M, et al. Durability assessment of glass FRP solid and hollow bars (rock bolts) for application in ground control of Jurong rock Caverns in Singapore[J]. Journal of Composites for Construction, 2017, 21(3):06016002.
    [12] 李趁趁, 于国卿, 张大鹏, 等. 潮湿环境下纤维增强复合材料筋的耐久性[J]. 人民黄河, 2015, 37(5):119-121.LI C C, YU G Q, ZHANG D P, et al. Durability of fiber reinforced composite bars in moisture environment[J]. Yellow River, 2015, 37(5):119-121. (in Chinese)
    [13] TAM L H, ZHOU A, ZHANG R X, et al. Effect of hygrothermal environment on traction-separation behavior of carbon fiber/epoxy interface[J]. Construction and Building Materials, 2019, 220:728-738.
    [14] TAM L H, ZHOU A, WU C. Nanomechanical behavior of carbon fiber/epoxy interface in hygrothermal conditioning:a molecular dynamics study[J]. Materials Today Communications, 2019, 19:495-505.
    [15] BÜYÜKÖZTÜRK O, BUEHLER M J, LAU D, et al. Structural solution using molecular dynamics:Fundamentals and a case study of epoxy-silica interface[J]. International Journal of Solids and Structures, 2011, 48(14/15):2131-2140.
    [16] ZHANG Y, LI T, HOU D S, et al. Insights on magnesium and sulfate ions' adsorption on the surface of sodium alumino-silicate hydrate (NASH) gel:a molecular dynamics study[J]. Physical Chemistry Chemical Physics, 2018, 20(27):18297-18310.
    [17] 李琎, 王小群. 碳纤维/环氧树脂界面分子模型建立与界面结合能计算方法探索研究[J]. 材料工程, 2008(Sup1):382-387,391.LI J, WANG X Q. Study on molecular model and interaction energy of carbon fiber/epoxy interface[J]. Journal of Materials Engineering, 2008(Sup1):382-387,391. (in Chinese)
    [18] HOU D S, LI Z, ZHAO T. Reactive force field simulation on polymerization and hydrolytic reactions in calcium aluminate silicate hydrate (C-A-S-H) gel:structure, dynamics and mechanical properties[J]. RSC Advances, 2015, 5(1):448-461.
    [19] HOU D S, ZHAO T J, MA H Y, et al. Reactive molecular simulation on water confined in the nanopores of the calcium silicate hydrate gel:structure, reactivity, and mechanical properties[J]. The Journal of Physical Chemistry C, 2015, 119(3):1346-1358.
    [20] YAPHARY Y L, YU Z C, LAM R H W, et al. Molecular dynamics simulations on adhesion of epoxy-silica interface in salt environment[J]. Composites Part B:Engineering, 2017, 131:165-172.
    [21] LAU D, BÜYÜKÖZTÜRK O, BUEHLER M J. Characterization of the intrinsic strength between epoxy and silica using a multiscale approach[J]. Journal of Materials Research, 2012, 27(14):1787-1796.
    [22] 王自柯. FRP筋在模拟海水-海砂混凝土孔溶液浸泡下的耐久性研究[D]. 哈尔滨:哈尔滨工业大学, 2018.WANG Z K. Study on the durability performances of fiber reinforced polymer (FRP) bars exposed to simulated seawater and sea sand concrete pore solution[D]. Harbin:Harbin Institute of Technology, 2018. (in Chinese)
    [23] 宇慧平, 皮本松, 陈沛, 等. 交联环氧树脂热力学性能的分子模拟[J]. 北京工业大学学报, 2019, 45(4):322-329.YU H P, PI B S, CHEN P, et al. Thermal and mechanical properties of crosslinked epoxy based on molecular dynamics[J]. Journal of Beijing University of Technology, 2019, 45(4):322-329. (in Chinese)
    [24] ROSA A L, EL-BARBARY A A, HEGGIE M I, et al. Structural and thermodynamic properties of water related defects in α-quartz[J]. Physics and Chemistry of Minerals, 2005, 32(5/6):323-331.
    [25] 李涛. 基于分子动力学理论水和离子在掺铝相水泥基材料中的吸附与传输特性研究[D]. 青岛:青岛理工大学, 2018.LI T. Study on adsorption and transport characteristics of water and ions in aluminumdoped cement-based materials based on molecular dynamics method[D]. Qingdao, Shandong:Qingdao Tehcnology University, 2018. (in Chinese)
    [26] RAHIER H, MELE B, BIESEMANS M, et al. Low-temperature synthesized aluminosilicate glasses[J]. Journal of Materials Science, 1996, 31(1):71-79.
    [27] ZHANG J, LI W, YAN Y G, et al. Molecular insight into nanoscale water films dewetting on modified silica surfaces[J]. Physical Chemistry Chemical Physics, 2015, 17(1):451-458.
    [28] 邹在平, 孟兵, 何文佩, 等. 不同水环境下碳纤维增强EP复合材料的吸湿老化[J]. 工程塑料应用, 2019, 47(9):116-120,143.ZOU Z P, MENG B, HE W P, et al. Hygroscopic aging of carbon fiber reinforced EP resin composites in different water environment[J]. Engineering Plastics Application, 2019, 47(9):116-120,143. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

宋华苗,金祖权,王攀,朱德举.水环境下掺铝硅质基体-树脂粘结界面性能演变的分子动力学模拟与验证[J].土木与环境工程学报(中英文),2021,43(5):123-131. SONG Huamiao, JIN Zuquan, WANG Pan, ZHU Deju. A molecular dynamics simulation and validation of bonding behavior evolution between epoxy and aluminum-doped silica substrate under water environment[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2021,43(5):123-131.10.11835/j. issn.2096-6717.2021.042

复制
分享
文章指标
  • 点击次数:405
  • 下载次数: 1108
  • HTML阅读次数: 768
  • 引用次数: 0
历史
  • 收稿日期:2021-01-09
  • 在线发布日期: 2021-07-20
文章二维码