建筑材料密强综合评价方法
CSTR:
作者:
中图分类号:

TU501

基金项目:

国家自然科学基金(51609093);东华理工大学研究生创新基金(DHYC-201931);江西省“双千计划”创新领军人才项目(李明东)


Comprehensive evaluation method of density-strength of building materials
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    建筑材料具有高强度和低密度的要求,有必要建立适合优化选择其力学性能的评价指标。在密度和强度评估的背景下,提出对建筑材料密度和强度进行综合评价的密强法。基于密强法进行了不同材料之间的优选和同一材料不同参数之间的优选,研究了不同建筑材料的密度和强度参数在密强图的分布情况。结果表明:不同材料在密强图上的密强不同,在优选材料时可由密强图分别计算出各材料的相对密强改进量及改进角,进行比选;同一材料在不同参数下的密度与强度的表现不同,由密强图可对影响材料性能的因素进行优选;密强能综合反映建筑材料密度和强度的性质,是表达材料轻质高强性的一种直观易懂的方法。

    Abstract:

    Building materials have requirements of high-strength and low-density, and it is necessary to establish evaluation indexes that are suitable for optimizing the mechanical properties of building materials. Under the background of density and strength evaluation, a method for comprehensive evaluation of the density and strength of building materials, density-strength method, is proposed. Based on the density-strength method, the optimization of different materials and the optimization of different parameters of the same material are carried out, and the distribution of the density and strength parameters of different building materials in the density-strength diagram is studied. The results show that the density and strength of different materials is different on the density-strength diagram, and when selecting materials, the density-strength diagram can be used to calculate the relative density improvement amount and the improvement angle of each material for comparison and selection; the density and strength of the same material under different parameters are different, and the factors affecting the properties of the material can be optimized by the density-strength diagram; density and strength can comprehensively reflect the properties of density and strength of building materials, which is an intuitive and understandable method to express the lightweight and high strength of materials.

    参考文献
    [1] PARK G H, KIM J T, PARK H J, et al. Development of lightweight MgLiAl alloys with high specific strength[J]. Journal of Alloys and Compounds, 2016, 680:116-120.
    [2] WU Y P, WANG J Y, MONTEIRO P J M, et al. Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings[J]. Construction and Building Materials, 2015, 87:100-112.
    [3] BENAICHA M, HAFIDI ALAOUI A, JALBAUD O, et al. Dosage effect of superplasticizer on self-compacting concrete:correlation between rheology and strength[J]. Journal of Materials Research and Technology, 2019, 8(2):2063-2069.
    [4] 朱伟, 李明东, 张春雷, 等. 砂土EPS颗粒混合轻质土的最优击实含水率[J]. 岩土工程学报, 2009, 31(1):21-25. ZHU W, LI M D, ZHANG C L, et al. The optimum moisture content of sand EPS beads mixed lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1):21-25. (in Chinese)
    [5] NARASIMMAN R, VIJAYAN S, PRABHAKARAN K. Carbon-carbon composite foams with high specific strength from sucrose and milled carbon fiber[J]. Materials Letters, 2015, 144:46-49.
    [6] 鹿健良, 孙晶晶. 陶粒泡沫混凝土配合比试验研究[J]. 混凝土与水泥制品, 2012(9):60-62. LU J L, SUN J J. Experimental study on mix ratio of ceramsite foam concrete[J]. China Concrete and Cement Products, 2012(9):60-62. (in Chinese)
    [7] GONG P, YAO K F, WANG X, et al. Centimeter-sized Ti-based bulk metallic glass with high specific strength[J]. Progress in Natural Science:Materials International, 2012, 22(5):401-406.
    [8] GU J L, YANG X L, ZHANG A L, et al. Centimeter-sized Ti-rich bulk metallic glasses with superior specific strength and corrosion resistance[J]. Journal of Non-Crystalline Solids, 2019, 512:206-210.
    [9] 张林春, 张爱莲, 王倩, 等. 掺煤矸石泡沫混凝土制备及力学性能[J]. 硅酸盐通报, 2020, 39(9):2800-2806. ZHANG L C, ZHANG A L, WANG Q, et al. Preparation and mechanical properties of foamed concrete mixed with coal gangue[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9):2800-2806. (in Chinese)
    [10] 尚建丽, 陈奇侠. 地聚物多孔轻质高强材料的制备及孔结构特性[J]. 硅酸盐通报, 2016, 35(5):1385-1389, 1395. SHANG J L, CHEN Q X. Preparation and pore structure of porous geopolymer material with lightweight and high strength[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(5):1385-1389, 1395. (in Chinese)
    [11] 蔡爽, 刘向, 李文, 等. 利用东湖淤泥制备轻质高强陶粒的研究[J]. 武汉理工大学学报, 2015, 37(11):21-25. CAI S, LIU X, LI W, et al. Research on preparation of high strength ceramic by using east lake silt[J]. Journal of Wuhan University of Technology, 2015, 37(11):21-25. (in Chinese)
    [12] 李杨, 孟凡涛, 王鹏, 等. 黄金尾矿制备轻质高强陶粒的工艺研究[J]. 人工晶体学报, 2018, 47(8):1554-1559, 1572. LI Y, MENG F T, WANG P, et al. Preparation process of lightweight and high strength ceramsites from gold tailings[J]. Journal of Synthetic Crystals, 2018, 47(8):1554-1559, 1572. (in Chinese)
    [13] 孙常杰, 尹红, 李斌斌, 等. 轻质高强混凝土的配制和性能研究[J]. 混凝土世界, 2014(10):86-90. SUN C J, YIN H, LI B B, et al. Study on preparation and properties of lightweight high strength concrete[J]. Building Decoration Materials World, 2014(10):86-90.(in Chinese)
    [14] 李明东. 砂土EPS颗粒混合轻质土(LSES)的击实特性研究[D]. 南京:河海大学, 2008.LI M D. Study of compaction properties of Lightweight Sand-EPS Beads Soil (LSES)[D]. Nanjing:Hohai University, 2008.(in Chinese)
    [15] 董恒瑞, 周国平, 邓铃夕. HLC60轻质高强混凝土试配探索[J]. 重庆建筑, 2017, 16(5):50-53. DONG H R, ZHOU G P, DENG L X. Exploration on trial preparation of HLC60[J]. Chongqing Architecture, 2017, 16(5):50-53. (in Chinese)
    [16] 吴开胜, 张传顺. 轻质高强抹灰石膏的配制与性能研究[J]. 砖瓦, 2018(4):27-29. WU K S, ZHANG C S. Preparation and property of lightweight and high-strength gypsum mortar[J]. Brick-Tile, 2018(4):27-29. (in Chinese)
    [17] 赵威, 王竹, 黄惠宁, 等. 金尾矿基轻质高强陶粒的制备及性能研究[J]. 人工晶体学报, 2018, 47(6):1266-1271. ZHAO W, WANG Z, HUANG H N, et al. Research on preparation and properties of lightweight high-intensity ceramsites based on gold tailings[J]. Journal of Synthetic Crystals, 2018, 47(6):1266-1271. (in Chinese)
    [18] 陈策, 王永进, 何德坪. 高比强多孔铝合金的压缩变形性能[J]. 材料研究学报, 2003, 17(3):230-234. CHEN C, WANG Y J, HE D P. Study on compressive deformation of porous aluminum alloy with high specific strength[J]. Chinese Journal of Materials Research, 2003, 17(3):230-234. (in Chinese)
    [19] 倪修全, 殷和平, 陈德鹏. 土木工程材料[M]. 武汉:武汉大学出版社, 2014.NI X Q, YIN H P, CHEN D P. Civil Engineering Material[J]. Wuhan:Wuhan Univerity Press, 2014. (in Chinese)
    [20] 于辉, 侯殊贝, 吴亮. 高层重木结构建筑的材料选择与设计建构研究[J]. 建筑技艺, 2018(11):108-110. YU H, HOU S B, WU L. Research of material selection and design about high-rise building with heavy wooden structure[J]. Architecture Technique, 2018(11):108-110. (in Chinese)
    [21] 李明东, 朱伟, 张春雷, 等. 击实参数对砂土EPS颗粒混合轻质土的影响[J]. 河海大学学报(自然科学版), 2008, 36(6):814-817. LI M D, ZHU W, ZHANG C L, et al. Effect of compaction parameters on lightweight sand-EPS beads soil[J]. Journal of Hohai University (Natural Sciences), 2008, 36(6):814-817. (in Chinese)
    [22] 李明东, 朱伟, 马殿光, 等. EPS颗粒混合轻质土的施工技术及其应用实例[J]. 岩土工程学报, 2006, 28(4):533-536. LI M D, ZHU W, MA D G, et al. Construction technology and application in situ of expanded polystyrene treated lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4):533-536.(in Chinese)
    [23] LI M D, WEN K J, LI L, et al. Mechanical properties of expanded polystyrene beads stabilized lightweight soil[J]. Geomechanics and Engineering, 2017, 13(3):459-474.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑振,李明东,孙林柱,舒阳,刘客.建筑材料密强综合评价方法[J].土木与环境工程学报(中英文),2021,43(5):158-165. ZHENG Zhen, LI Mingdong, SUN Linzhu, SHU Yang, LIU Ke. Comprehensive evaluation method of density-strength of building materials[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2021,43(5):158-165.10.11835/j. issn.2096-6717.2020.185

复制
分享
文章指标
  • 点击次数:375
  • 下载次数: 1123
  • HTML阅读次数: 475
  • 引用次数: 0
历史
  • 收稿日期:2019-10-15
  • 在线发布日期: 2021-07-20
文章二维码