颗粒形状对粗粒土-格栅界面剪切特性的影响
CSTR:
作者:
中图分类号:

TU411.3

基金项目:

国家自然科学基金(51678352、51622810、51878402、51978534)


Effects of particle shape on shear behaviors of interface between coarse-grained soil and geogrid
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为研究颗粒形状对粗粒土-格栅界面剪切行为的影响,选择碎石和具有相同粒径分布的玻璃珠作为试验材料,利用动态直剪仪对碎石-格栅和玻璃珠-格栅界面进行一系列单调直剪试验、循环剪切试验和循环后单调直剪试验,分析竖向应力分别为30、60、90 kPa下加筋碎石和加筋玻璃珠界面的单调直剪特性;研究在位移幅值分别为1、3、6、9、12、15 mm的循环加载作用下两种加筋界面的循环剪切特性,并对比分析了循环剪切前、后两种加筋界面单调剪切特性的异同点。结果表明:单调直剪试验中,3种竖向应力下碎石-格栅界面的抗剪强度和最大剪胀量均大于玻璃珠-格栅界面的相应值。循环剪切试验中,在不同剪切幅值的循环加载作用下,碎石-格栅和玻璃珠-格栅界面的循环剪切行为存在差异。循环后单调直剪试验中,碎石-格栅界面循环后的界面抗剪强度较未经受循环加载的界面有所提高,幅值为15 mm的界面除外;所有幅值下玻璃珠-格栅界面循环后的抗剪强度均发生退化。

    Abstract:

    In order to study the effect of particle shape on shear behaviors of interface between coarse-grained soil and geogrid, the gravel and glass beads with the same particle size distribution were selected as test materials.A series of monotonic direct shear tests, cyclic shear tests and post-cyclic direct shear tests were carried out on the gravel-geogrid interface and glass bead-geogrid interface using a dynamic direct shear apparatus. The monotonic direct shear characteristics of the interface between reinforced gravel and reinforced glass beads under normal stresses of 30, 60, 90 kPa were analyzed. Then, the cyclic shear characteristics of two reinforced interfaces under cyclic loading with displacement amplitudes of 1, 3, 6, 9, 12, 15 mm were studied.The similarities and differences of monotonic shear characteristics of the two reinforced interfaces before and after cyclic shear were compared and analyzed. The results show that in the monotonic shear tests, the shear strength and maximum dilation of gravel-geogrid interface under the three types of normal stresses are greater than the corresponding values of glass beads-geogrid interface. In the cyclic shear tests, the cyclic shear behaviors of gravel-geogrid and glass beads-geogrid interfaces under the cyclic loading with different shear amplitudes are not exactly the same. In the post-cyclic direct shear tests after cycling, the interface shear strength of gravel-geogrid interface after cycling is greater than that of the interface without cyclic loading, except for the interface with amplitude of 15 mm, while the corresponding value of glass beads-geogrid interface at all amplitudes is degraded.

    参考文献
    [1] VANGLA P, LATHA GALI M. Effect of particle size of sand and surface asperities of reinforcement on their interface shear behaviour [J]. Geotextiles and Geomembranes, 2016, 44(3): 254-268.
    [2] 刘飞禹, 林旭, 王军. 砂土颗粒级配对筋土界面抗剪特性的影响[J]. 岩石力学与工程学报, 2013, 32(12): 2575-2582. LIU F Y, LIN X, WANG J. Influence of particle-size gradation on shear behavior of geosynthetics and sand interface [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2575-2582.(in Chinese)
    [3] 赵程, 谢俊飞, 王文东, 等. 粗砂与结构物接触面的剪切特性试验研究[J]. 同济大学学报(自然科学版), 2019, 47(10): 1406-1413. ZHAO C, XIE J F, WANG W D, et al. Experimental study on shear behavior of interface between coarse sand and structure [J]. Journal of Tongji University (Natural Science), 2019, 47(10): 1406-1413.(in Chinese)
    [4] 李丽华, 文贝, 胡智, 等. 建筑垃圾填料与土工合成材料加筋剪切性能研究[J]. 武汉大学学报(工学版), 2019, 52(4): 311-316. LI L H, WEN B, HU Z, et al. Study on reinforced shear behavior of construction waste filler and geosynthetics [J]. Engineering Journal of Wuhan University, 2019, 52(4): 311-316.(in Chinese)
    [5] 王军, 胡惠丽, 刘飞禹, 等. 粒孔比对筋土界面直剪特性的影响[J]. 岩土力学, 2018, 39(Sup2): 115-122. WANG J, HU H L, LIU F Y, et al. Effects of direct shear characteristics of sand-geogrid interface under different aperture ratios[J]. Rock and Soil Mechanics, 2018, 39(Sup2): 115-122.
    [6] SWETA K, HUSSAINI S K K. Effect of shearing rate on the behavior of geogrid-reinforced railroad ballast under direct shear conditions [J]. Geotextiles and Geomembranes, 2018, 46(3): 251-256.
    [7] SWETA K, HUSSAINI S K K. Behavior evaluation of geogrid-reinforced ballast-subballast interface under shear condition [J]. Geotextiles and Geomembranes, 2019, 47(1): 23-31.
    [8] 刘飞禹, 张端阳, 王军. 循环前后不同颗粒粒径下sandwich形加筋土筋土界面单调直剪特性[J]. 上海大学学报(自然科学版), 2018, 24(3): 456-466. LIU F Y, ZHANG D Y, WANG J. Cyclic and post-cyclic direct shear behavior of sandwich reinforcement-soil interface under different sand particle sizes [J]. Journal of Shanghai University (Natural Science Edition), 2018, 24(3): 456-466.(in Chinese)
    [9] 刘飞禹, 胡惠丽, 王军, 等. 粒孔比对筋-土界面循环剪切特性的影响[J]. 中国公路学报, 2019, 32(12): 115-122, 131. LIU F Y, HU H L, WANG J, et al. Influence of aperture ratio on cyclic shear behavior of geogrid-soil interface [J]. China Journal of Highway and Transport, 2019, 32(12): 115-122, 131.(in Chinese)
    [10] LIU F Y, WANG P, GENG X Y, et al. Cyclic and post-cyclic behaviour from sand-geogrid interface large-scale direct shear tests [J]. Geosynthetics International, 2016, 23(2): 129-139.
    [11] WANG J, LIU F Y, WANG P, et al. Particle size effects on coarse soil-geogrid interface response in cyclic and post-cyclic direct shear tests [J]. Geotextiles and Geomembranes, 2016, 44(6): 854-861.
    [12] NYE C J, FOX P J. Dynamic shear behavior of a needle-punched geosynthetic clay liner [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(8): 973-983.
    [13] VIEIRA C S, LOPES M L, CALDEIRA L M. Sand-geotextile interface characterisation through monotonic and cyclic direct shear tests [J]. Geosynthetics International, 2013, 20(1): 26-38.
    [14] FENG D K, ZHANG J M, DENG L J. Three-dimensional monotonic and cyclic behavior of a gravel-steel interface from large-scale simple-shear tests [J]. Canadian Geotechnical Journal, 2018, 55(11): 1657-1667.
    [15] CHO G C, DODDS J, SANTAMARINA J C. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 591-602.
    [16] CHERIF TAIBA A, MAHMOUDI Y, BELKHATIR M, et al. Experimental investigation into the influence of roundness and sphericity on the undrained shear response of silty sand soils [J]. Geotechnical Testing Journal, 2018, 41(3):619-633.
    [17] ALSHIBLI K A, CIL M B. Influence of particle morphology on the friction and dilatancy of sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(3): 04017118.
    [18] TSOMOKOS A, GEORGIANNOU V N. Effect of grain shape and angularity on the undrained response of fine sands[J]. Canadian Geotechnical Journal, 2010, 47(5): 539-551.
    [19] 薛亚东, 刘忠强, 黄宏伟. 砂砾石混合物抗剪强度特性试验研究[J]. 土木建筑与环境工程, 2012, 34(6): 75-79. XUE Y D, LIU Z Q, HUANG H W. Experimental analysis on shear strength characteristics of sand-gravel mixtures [J].Journal of Civil, Architectural & Environmental Engineering, 2012, 34(6): 75-79.(in Chinese)
    [20] AFZALI-NEJAD A, LASHKARI A, SHOURIJEH P T. Influence of particle shape on the shear strength and dilation of sand-woven geotextile interfaces [J]. Geotextiles and Geomembranes, 2017, 45(1): 54-66.
    [21] ANUBHAV, BASUDHAR P K. Interface behavior of woven geotextile with rounded and angular particle sand [J]. Journal of Materials in Civil Engineering, 2013, 25(12): 1970-1974.
    [22] XIAO Y, LONG L H, MATTHEW EVANS T, et al. Effect of particle shape on stress-dilatancy responses of medium-dense sands [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(2): 04018105.
    [23] CHANG J Y, FENG S J, SHEN Y, et al. Experimental study of shear strength of geosynthetic clay liner for monotonic loading [C]//Proceedings of the 8th International Congress on Environmental Geotechnics, 2019, 2: 641-648.
    [24] VIEIRA C S, PEREIRA P M. Interface shear properties of geosynthetics and construction and demolition waste from large-scale direct shear tests [J]. Geosynthetics International,2016, 23(1): 62-70.
    [25] GUO P J, SU X B. Shear strength, interparticle locking, and dilatancy of granular materials [J]. Canadian Geotechnical Journal, 2007, 44(5): 579-591.
    [26] YANG H, XU W J, SUN Q C, et al. Study on the meso-structure development in direct shear tests of a granular material [J]. Powder Technology, 2017, 314: 129-139.
    [27] JONGCHANSITTO P, PREECHAWUTTIPONG I, BALANDRAUD X, et al. Numerical investigation of the influence of particle size and particle number ratios on texture and force transmission in binary granular composites [J]. Powder Technology, 2017, 308: 324-333.
    [28] 刘清秉, 项伟, BUDHU M, 等. 砂土颗粒形状量化及其对力学指标的影响分析[J]. 岩土力学, 2011, 32(Sup1): 190-197. LIU Q B, XIANG W,BUDHU M, et al. Study of particle shape quantification and effect on mechanical property of sand [J]. Rock and Soil Mechanics, 2011, 32(Sup1): 190-197.(in Chinese)
    [29] LAI J, DANIEL D E, WRIGHT S G. Effects of cyclic loading on internal shear strength of unreinforced geosynthetic clay liner [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(1): 45-52.
    [30] SEED H B, CHAN C. Clay strength under earthquake loading conditions [J]. Journal of Soil Mechanics & Foundations Division, ASCE, 1966, 92(2): 53-78.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘飞禹,郑其婷,王军,应梦杰.颗粒形状对粗粒土-格栅界面剪切特性的影响[J].土木与环境工程学报(中英文),2021,43(6):48-56. LIU Feiyu, ZHENG Qiting, WANG Jun, YING Mengjie. Effects of particle shape on shear behaviors of interface between coarse-grained soil and geogrid[J]. JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING,2021,43(6):48-56.10.11835/j. issn.2096-6717.2020.083

复制
分享
文章指标
  • 点击次数:493
  • 下载次数: 807
  • HTML阅读次数: 594
  • 引用次数: 0
历史
  • 收稿日期:2020-05-17
  • 在线发布日期: 2021-08-19
文章二维码